版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省保定市易县中学数学高二下期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段。下表为10名学生的预赛成绩,其中有些数据漏记了(见表中空白处)学生序号12345678910立定跳远(单位:米)1.961.681.821.801.601.761.741.721.921.7830秒跳绳(单位:次)63756062727063在这10名学生中进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则以下判断正确的为()A.4号学生一定进入30秒跳绳决赛B.5号学生一定进入30秒跳绳决赛C.9号学生一定进入30秒跳绳决赛D.10号学生一定进入30秒眺绳决赛2.6名同学安排到3个社区,,参加志愿者服务,每个社区安排两名同学,其中甲同学必须到社区,乙和丙同学均不能到社区,则不同的安排方法种数为()A.5 B.6 C.9 D.123.已知是定义在上的奇函数,对任意的,均有.当时,,则()A. B. C. D.4.若二项式的展开式中二项式系数的和是64,则展开式中的常数项为A. B. C.160 D.2405.某班某天上午有五节课,需安排的科目有语文,数学,英语,物理,化学,其中语文和英语必须连续安排,数学和物理不得连续安排,则不同的排课方法数为()A.60 B.48 C.36 D.246.在“新零售”模式的背景下,自由职业越来越流行,诸如:淘宝网店主、微商等等.现调研某自由职业者的工资收入情况.记表示该自由职业者平均每天工作的小时数,表示平均每天工作个小时的月收入.(小时)23456(千元)2.5344.56假设与具有线性相关关系,则关于的线性回归方程必经过点()A. B. C. D.7.函数在上单调递减,且是偶函数,若,则的取值范围是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)8.若直线经过点,且原点到直线的距离为,则直线的方程为A. B.C.或 D.或9.函数为偶函数,且在单调递增,则的解集为A. B.或C. D.或10.随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线城市一线城市总计愿生452065不愿生132235总计5842100附表:0.0500.0100.0013.8416.63510.828由算得,,参照附表,得到的正确结论是()A.在犯错误的概率不超过的前提下,认为“生育意愿与城市级别有关”B.在犯错误的概率不超过的前提下,认为“生育意愿与城市级别无关”C.有以上的把握认为“生育意愿与城市级别有关”D.有以上的把握认为“生育意愿与城市级别无关”11.已知复数,则的虚部是()A. B. C.-4 D.412.函数的定义域为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为__________.14.若双曲线的焦点在轴上,焦距为,且过点,则双曲线的标准方程为______.15.7个人站成一排,其中甲一定站在最左边,乙和丙必须相邻,一共有______种不同排法16.已知,且,则,中至少有一个大于1,在用反证法证明时,假设应为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某公司生产一种产品,每年投入固定成本万元.此外,每生产件这种产品还需要增加投入万元.经测算,市场对该产品的年需求量为件,且当出售的这种产品的数量为(单位:百件)时,销售所得的收入约为(万元).(1)若该公司这种产品的年产量为(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量的函数;(2)当该公司的年产量为多少时,当年所得利润最大?最大为多少?18.(12分)如图(A),(B),(C),(D)为四个平面图形:(A)(B)(C)(D)(I)数出每个平面图形的交点数、边数、区域数,并将列联表补充完整;交点数边数区域数(A)452(B)58(C)125(D)15(II)观察表格,若记一个平面图形的交点数、边数、区域数分别为,试猜想间的数量关系(不要求证明).19.(12分)如图,在四棱锥中,底面是直角梯形,且,,,,,,.(1)证明:平面;(2)求四棱锥的体积.20.(12分)已知函数,.(Ⅰ)若是函数的一个极值点,求实数的值及在内的最小值;(Ⅱ)当时,求证:函数存在唯一的极小值点,且.21.(12分)在极坐标系中,O为极点,点在曲线上,直线过点且与垂直,垂足为P(1)当时,求及的极坐标方程(2)当在上运动且点P在线段上时,求点P的轨迹的极坐标方程22.(10分)在中,内角,,所对的边分别为,,,且.(1)证明:;(2)若,且的面积为,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
先确定立定跳远决赛的学生,再讨论去掉两个的可能情况即得结果【题目详解】进入立定跳远决赛的学生是1,3,4,6,7,8,9,10号的8个学生,由同时进入两项决赛的有6人可知,1,3,4,6,7,8,9,10号有6个学生进入30秒跳绳决赛,在这8个学生的30秒跳绳决赛成绩中,3,6,7号学生的成绩依次排名为1,2,3名,1号和10号成绩相同,若1号和10号不进入30秒跳绳决赛,则4号肯定也不进入,这样同时进入立定跳远决赛和30秒跳绳决赛的只有5人,矛盾,所以1,3,6,7,10号学生必进入30秒跳绳决赛.选D.【题目点拨】本题考查合情推理,考查基本分析判断能力,属中档题.2、C【解题分析】分析:该题可以分为两类进行研究,一类是乙和丙之一在A社区,另一在B社区,另一类是乙和丙在B社区,计算出每一类的数据,然后求解即可.详解:由题意将问题分为两类求解:第一类,若乙与丙之一在甲社区,则安排种数为种;第二类,若乙与丙在B社区,则A社区还缺少一人,从剩下三人中选一人,另两人去C社区,故安排方法种数为种;故不同的安排种数是种,故选C.点睛:该题考查的是有关分类加法计数原理,在解题的过程中,对问题进行正确的分类是解题的关键,并且需要将每一类对应的数据正确算出.3、C【解题分析】
由f(x)=1﹣f(1﹣x),得f(1)=1,确定f()=,利用f(x)是奇函数,即可得出结论.【题目详解】由f(x)=1﹣f(1﹣x),得f(1)=1,令x=,则f()=,∵当x∈[0,1]时,2f()=f(x),∴f()=f(x),即f()=f(1)=,f()=f()=14,f()=f()=14,∵<<,∵对任意的x1,x2∈[﹣1,1],均有(x2﹣x1)(f(x2)﹣f(x1))≥0∴f()=,同理f()=…=f(﹣)=f()=.∵f(x)是奇函数,∴f(﹣)+f(﹣)+…+f(﹣)+f(﹣)=﹣[f(﹣)+f()+…+f()+f()]=﹣,故选:C.【题目点拨】本题考查函数的奇偶性、单调性,考查函数值的计算,属于中档题.4、D【解题分析】
由二项式定义得到二项展开式的二项式系数和为,由此得到,然后求通项,化简得到常数项,即可得到答案.【题目详解】由已知得到,所以,所以展开式的通项为,令,得到,所以展开式的常数项为,故选D.【题目点拨】本题主要考查了二项展开式的二项式系数以及特征项的求法,其中熟记二项展开式的系数问题和二项展开式的通项是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.5、D【解题分析】
由排列组合中的相邻问题与不相邻问题得:不同的排课方法数为,得解.【题目详解】先将语文和英语捆绑在一起,作为一个新元素处理,再将此新元素与化学全排,再在3个空中选2个空将数学和物理插入即可,即不同的排课方法数为,故选:D.【题目点拨】本题考查了排列组合中的相邻问题与不相邻问题,属中档题.6、C【解题分析】分析:先求均值,再根据线性回归方程性质得结果.详解:因为,所以线性回归方程必经过点,选C.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,写出回归方程,回归直线方程恒过点.7、B【解题分析】
根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。【题目详解】根据题意,函数满足是偶函数,则函数的图像关于直线对称,若函数在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B.【题目点拨】本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。8、D【解题分析】
当直线斜率不存在时,满足题意;当直线斜率存在时,假设直线方程,利用点到直线距离公式构造方程解得结果.【题目详解】当直线斜率不存在时,方程为:,满足题意;当直线斜率存在时,设直线方程为:,即:原点到直线距离:,解得:直线为:,即:综上所述:直线的方程为:或本题正确选项:【题目点拨】本题考查点到直线距离公式的应用,易错点是忽略直线斜率不存在的情况,导致求解错误.9、D【解题分析】
根据函数的奇偶性得到,在单调递增,得,再由二次函数的性质得到,【题目详解】函数为偶函数,则,故,因为在单调递增,所以.根据二次函数的性质可知,不等式,或者,的解集为,故选D.【题目点拨】此题考查了函数的对称性和单调性的应用,对于抽象函数,且要求解不等式的题目,一般是研究函数的单调性和奇偶性,通过这些性质将要求的函数值转化为自变量的大小比较,直接比较括号内的自变量的大小即可.10、C【解题分析】K2≈9.616>6.635,∴有99%以上的把握认为“生育意愿与城市级别有关”,本题选择C选项.点睛:独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.11、A【解题分析】
利用复数运算法则及虚部定义求解即可【题目详解】由,得,所以虚部为.故选A【题目点拨】本题考查复数的四则运算,复数的虚部,考查运算求解能力.12、B【解题分析】
利用二次根式的性质和分式的分母不为零求出函数的定义域即可.【题目详解】由题意知,,解得且,所以原函数的定义域为.故选:B【题目点拨】本题考查函数定义域的求解;考查二次根式的性质和分式的分母不为零;考查运算求解能力;属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
利用切线的斜率是函数在切点处导数,求出切线斜率,再利用直线方程的点斜式求出切线方程.【题目详解】∵y=lnx,∴,∴函数y=lnx在x=1处的切线斜率为1,又∵切点坐标为(1,0),∴切线方程为y=x﹣1.故答案为:y=x﹣1.【题目点拨】本题考查了函数导数的几何意义,利用导数研究曲线上某点切线方程,正确求导是关键.14、【解题分析】
设双曲线的标准方程为,利用双曲线的定义求出的值,结合焦距求出的值,从而可得出双曲线的标准方程.【题目详解】设双曲线的标准方程为,由题意知,该双曲线的左、右焦点分别为、,由双曲线的定义可得,,则,因此,双曲线的标准方程为.故答案为:.【题目点拨】本题考查过点求双曲线的方程,在双曲线的焦点已知的前提下,可以利用定义来求双曲线的标准方程,也可以利用待定系数法求解,考查运算求解能力,属于中等题.15、240.【解题分析】分析:本题是一个排列组合及简单计数问题,甲要站在最左边,剩下6个位置,6个人排列,乙和丙必须相邻,把乙和丙看成一个元素,同另外4个人排列,乙和丙之间也有一个排列,相乘得到结果.详解:由题意知本题是一个排列组合及简单计数问题,甲要站在最左边,剩下6个位置,6个人排列,∵乙和丙必须相邻,∴把乙和丙看成一个元素,同另外4个人排列,乙和丙之间也有一个排列,根据乘法原理知共有A55A22=240种结果,故答案为240点睛:站队问题是排列组合中的典型问题,解题时要先排限制条件多的元素,把限制条件比较多的元素排列后,再排没有限制条件的元素,最后要用计数原理得到结果,本题的甲不影响排列.16、,均不大于1(或者且)【解题分析】
假设原命题不成立,即找,中至少有一个大于1的否定即可.【题目详解】∵x,y中至少有一个大于1,∴其否定为x,y均不大于1,即x≤1且y≤1,故答案为:x≤1且y≤1.【题目点拨】本题考查反证法,考查命题的否定,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)当年产量为件时,所得利润最大.【解题分析】分析:(1)利用销售额减去成本即可得到年利润关于年产量的函数解析式;(2)分别利用二次函数的性质以及函数的单调性,求得两段函数值的取值范围,从而可得结果.详解:(1)由题意得:;(2)当时,函数对称轴为,故当时,;当时,函数单调递减,故,所以当年产量为件时,所得利润最大.点睛:本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.理解本题题意的关键是构造分段函数,构造分段函数时,做到分段合理、不重不漏,分段函数的最值是各段的最大(最小)者的最大者(最小者).18、(I)列联表见解析;(II).【解题分析】
(I)数出结果填入表格即可.(II)观察一个平面图形的交点数、边数、区域数分别为E,F,G,即可猜想E,F,G之间的等量关系.【题目详解】(I)(II)观察表格,若记一个平面图形的交点数、边数、区域数分别为,猜想之间的数量关系为.【题目点拨】本题考查归纳推理,实际上本题考查的重点是给出几个平面图形的交点数、边数、区域数写猜想E,F,G之间的等量关系,本题是一个综合题目,知识点结合的比较巧妙.19、(1)见解析(2)【解题分析】
(1)先证明,,再证明平面;(2)连接,求出AC,CB的长,再求四棱锥的体积.【题目详解】(1)证明:因为,,所以,即,同理可得,因为,所以平面.(2)解:连接,,,..【题目点拨】本题主要考查线面垂直关系的证明,考查锥体的体积是计算,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(Ⅰ);(Ⅱ)见解析【解题分析】
(Ⅰ)由已知条件的导函数,以及,从而求出实数的值,利用导数求出函数在内的单调性,从而得到在内的最小值(Ⅱ)由题可得,令,要证函数存在唯一的极小值点,即证只有唯一根,利用导数求出的单调区间与值域即可,且由零点定理可知,由,可得,代入中,利用导数求出在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业质量管理与提升合同
- 2024年度新型车库门材料供应合同
- 2024年度拆墙工程保险合同
- 2024年度国际文化旅游合作合同
- 2024年度城市供水系统井群扩建工程承包合同
- 软木工艺品市场发展现状调查及供需格局分析预测报告
- 2024年度婚礼拍摄服务合同
- 2024年度大连港口货物装卸服务投标合同
- 智能铁路监控行业市场调研分析报告
- 采矿用电笛项目评价分析报告
- 视光门诊年终总结及计划
- 汉语拼音默写表及拼读专练
- 植物学#-形考作业3-国开(ZJ)-参考资料
- 《汽车保险与理赔》-教学设计
- 超市营运培训教案公开课
- 2024年新华社招聘笔试参考题库附带答案详解
- 生鲜超市供货投标方案(技术标)
- 菊花课件教学课件
- 非遗文化云南布朗簪花
- 2024年安全员B证理论考试题及解析
- 小儿热性惊厥课件
评论
0/150
提交评论