2024届河南省荥阳高中数学高二第二学期期末调研试题含解析_第1页
2024届河南省荥阳高中数学高二第二学期期末调研试题含解析_第2页
2024届河南省荥阳高中数学高二第二学期期末调研试题含解析_第3页
2024届河南省荥阳高中数学高二第二学期期末调研试题含解析_第4页
2024届河南省荥阳高中数学高二第二学期期末调研试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省荥阳高中数学高二第二学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线x2A.y=±23x B.y=±42.已知直线与直线垂直,则的关系为()A. B. C. D.3.若复数是虚数单位),则的共轭复数()A. B. C. D.4.复数等于()A. B. C.0 D.5.函数在处的切线与双曲线的一条渐近线平行,则双曲线的离心率是()A. B. C. D.6.在中,角A,B,C的对边分别为,若,则的形状为A.正三角形 B.等腰三角形或直角三角形C.直角三角形 D.等腰直角三角形7.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合CUA.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}8.观察下列各式:则()A.28B.76C.123D.1999.设,向量,若,则等于()A. B. C.-4 D.410.将三枚骰子各掷一次,设事件为“三个点数都不相同”,事件为“至少出现一个6点”,则概率的值为()A. B. C. D.11.设集合,,,则的取值范围为()A.或 B. C. D.或12.正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为,此时四面体ABCD外接球表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知则_______.14.在极坐标系中,圆上的点到直线的距离的最小值是____15.若二项式的展开式中的系数是84,则实数__________.16.已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A-BCD的外接球,BC=3,AB=23,点E在线段BD上,且BD=3BE,过点E作圆O的截面,则所得截面圆面积的取值范围是__三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是同一平面内的三个向量,;(1)若,且,求的坐标;(2)若,且与垂直,求与的夹角.18.(12分)在二项式的展开式中,前三项系数的绝对值成等差数列.(1)求展开式中二项式系数最大的项;(2)求展开式中所有有理项的系数之和.19.(12分)设圆的圆心为A,直线过点B(1,0)且与轴不重合,交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明:为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线交C1于M,N两点,过B且与垂直的直线与C1交于P,Q两点,求证:是定值,并求出该定值.20.(12分)已知函数的定义域为R,值域为,且对任意,都有,.(Ⅰ)求的值,并证明为奇函数;(Ⅱ)若时,,且,证明为R上的增函数,并解不等式.21.(12分)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,方案一:每满200元减50元;方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、l个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款半价7折8折原价(1)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;(2)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?22.(10分)设函数f(x)=1-x2+ln(x+1).(1)求函数f(x)的单调区间;(2)若不等式f(x)>-x2(k∈N*)在(0,+∞)上恒成立,求k的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

依据双曲线性质,即可求出。【题目详解】由双曲线x24-y29=1所以双曲线x24-y2【题目点拨】本题主要考查如何由双曲线方程求其渐近线方程,一般地双曲线x2a2双曲线y2a22、C【解题分析】

根据两直线垂直,列出等量关系,化简即可得出结果.【题目详解】因为直线与直线垂直,所以,即选C【题目点拨】根据两直线垂直求出参数的问题,熟记直线垂直的充要条件即可,属于常考题型.3、D【解题分析】

根据复数除法运算法则可化简复数得,由共轭复数定义可得结果.【题目详解】本题正确选项:【题目点拨】本题考查共轭复数的求解,关键是能够利用复数的除法运算法则化简复数,属于基础题.4、A【解题分析】

直接化简得到答案.【题目详解】.故选:.【题目点拨】本题考查了复数的化简,属于简单题.5、D【解题分析】

计算函数在处的切线斜率,根据斜率计算离心率.【题目详解】切线与一条渐近线平行故答案选D【题目点拨】本题考查了切线方程,渐近线,离心率,属于常考题型.6、C【解题分析】

根据题目分别为角A,B,C的对边,且可知,利用边化角的方法,将式子化为,利用三角形的性质将化为,化简得,推出,从而得出的形状为直角三角形.【题目详解】由题意知,由正弦定理得又展开得,又角A,B,C是三角形的内角又综上所述,的形状为直角三角形,故答案选C.【题目点拨】本题主要考查了解三角形的相关问题,主要根据正余弦定理,利用边化角或角化边,若转化成角时,要注意的应用.7、D【解题分析】试题分析:因为A∪B={x|x≤0或x≥1},所以CU考点:集合的运算.8、C【解题分析】试题分析:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即考点:归纳推理9、D【解题分析】

直接利用向量垂直的充要条件列方程求解即可.【题目详解】因为,且,所以,化为,解得,故选D.【题目点拨】利用向量的位置关系求参数是命题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.10、A【解题分析】考点:条件概率与独立事件.分析:本题要求条件概率,根据要求的结果等于P(AB)÷P(B),需要先求出AB同时发生的概率,除以B发生的概率,根据等可能事件的概率公式做出要用的概率.代入算式得到结果.解:∵P(A|B)=P(AB)÷P(B),P(AB)==P(B)=1-P()=1-=1-=∴P(A/B)=P(AB)÷P(B)==故选A.11、B【解题分析】,所以,选A.点睛:形如|x-a|+|x-b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a,b],(b,+∞)(此处设a<b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x-a|+|x-b|>c(c>0)的几何意义:数轴上到点x1=a和x2=b的距离之和大于c的全体;(3)图象法:作出函数y1=|x-a|+|x-b|和y2=c的图象,结合图象求解.12、C【解题分析】分析:三棱锥的三条侧棱,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积即可.详解:根据题意可知三棱锥的三条侧棱,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,三棱柱中,底面,,,的外接圆的半径为,由题意可得:球心到底面的距离为.球的半径为.外接球的表面积为:.故选:C.点睛:考查空间想象能力,计算能力.三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

x用x+1代入二项式,可得,只需求二项式展开式的第3项,即可求。【题目详解】x用x+1代,可得,由第3项公式,得,填8.【题目点拨】二项式定理的应用(1)求二项式定理中有关系数的和通常用“赋值法”.(2)二项式展开式的通项公式Tr+1=Can-rbr是展开式的第r+1项,而不是第r项.14、1【解题分析】试题分析:圆的直角坐标方程为,直线的直角坐标方程为,圆心到直线的距离,圆上的点到直线的距离的最小值为.考点:直角坐标与极坐标、距离公式.15、1【解题分析】

试题分析:由二项式定理可得:,因为的系数是,所以即,即,所以.考点:二项式定理.16、[2π,4π]【解题分析】

设△BDC的中心为O1,球O的半径为R,连接oO1D,OD,O1E,OE,可得R2=3+(3﹣R)2,解得R=2,过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,当截面过球心时,截面面积最大,即可求解.【题目详解】如图,设△BDC的中心为O1,球O的半径为R,连接oO1D,OD,O1E,OE,则O1D=3sin60在Rt△OO1D中,R2=3+(3﹣R)2,解得R=2,∵BD=3BE,∴DE=2在△DEO1中,O1E=3+4-2×∴OE=O过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,此时截面圆的半径为22-2当截面过球心时,截面面积最大,最大面积为4π.故答案为:[2π,4π]【题目点拨】本题考查了球与三棱锥的组合体,考查了空间想象能力,转化思想,解题关键是要确定何时取最值,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解题分析】

(1)设向量,根据和得到关于的方程组,从而得到答案;(2)根据与垂直,得到的值,根据向量夹角公式得到的值,从而得到的值.【题目详解】(1)设向量,因为,,,所以,解得,或所以或;(2)因为与垂直,所以,所以而,,所以,得,与的夹角为,所以,因为,所以.【题目点拨】本题考查根据向量的平行求向量的坐标,根据向量的垂直关系求向量的夹角,属于简单题.18、(1)(2)-【解题分析】

(1)由二项式定理展开式中的通项公式求出前三项,由前三项系数的绝对值成等差数列列方程即可求得,问题得解.(2)由,对赋值,使得的指数为正数即可求得所有理项,问题得解.【题目详解】(1)由二项式定理得展开式中第项为,所以前三项的系数的绝对值分别为1,,,由题意可得,整理得,解得或(舍去),则展开式中二项式系数最大的项是第五项,(2)因为,若该项为有理项,则是整数,又因为,所以或或,所以所有有理项的系数之和为【题目点拨】本题主要考查了二项式定理及其展开式的通项公式,考查分析能力,转化能力及计算能力,属于基础题.19、(I)();(II)【解题分析】

(I)根据几何关系,即可证明为定值,再利用椭圆的定义即可求出点E的轨迹方程;(Ⅱ)利用点斜式设出直线的方程,与椭圆方程联立方程组,得到关于的一元二次方程,利用根与系数关系以及弦长公式表示出,同理可得,代入中进行化简即可证明为定值。【题目详解】(I)因为,,故,所以,故.又圆的标准方程为,从而,所以,由题设得,,,由椭圆定义可得点的轨迹方程为:().(II)依题意:与轴不垂直,设的方程为,,.由得,.则,.所以.同理:故(定值)【题目点拨】本题考查解析几何中的轨迹问题以及定值问题,综合性强,运算量大,属于中档题。20、(Ⅰ),见解析;(Ⅱ)解集为.【解题分析】

(Ⅰ)由题意令,求得,再利用函数的奇偶性的定义,即可判定函数的奇偶性;(Ⅱ)根据函数的单调性的定义,可判定函数为单调递增函数,再利用函数的单调性,把不等式得到,进而可求解不等式的解集。【题目详解】(Ⅰ)令,得.∵值域为,∴.∵的定义域为,∴的定义域为.又∵,∴,为奇函数.(Ⅱ)任取∵,∴,∵时,,∴,∴,又值域为,∴,∴.∴为上的增函数.,∵.又为R上的增函数,∴.故的解集为.【题目点拨】本题主要考查了函数奇偶性和单调性的判定,以及函数的基本性质的应用问题,其中解答中熟记函数的单调性和奇偶性的定义,以及利用函数的基本性质,合理转化不等式关系式是解答的关键,着重考查了学生分析问题和解答问题的能力,属于中档试题。21、(1)(2)方案二更为划算【解题分析】

(1)设事件为“顾客获得半价”,可以求出,然后求出两位顾客都没有获得半价优惠的概率,然后利用对立事件的概率公式,求出两位顾客至少一人获得半价的概率;(2)先计算出方案一,顾客付款金额,再求出方案二付款金额元的可能取值,求出,最后进行比较得出结论.【题目详解】(1)设事件为“顾客获得半价”,则,所以两位顾客至少一人获得半价的概率为:.(2)若选择方案一,则付款金额为.若选择方案二,记付款金额为元,则可取的值为.,,,,∴.所以方案二更为划算.【题目点拨】本题考查了对立事件的概率公式、离散型随机变量的分布列、期望.考查了应用数学知识解决现实生活中实际问题的能力.22、(1)见解析(2)1【解题分析】

(1)首先求出f(x)的定义域,函数f(x)的导数,分别令它大于0,小于0,解不等式,必须注意定义域,求交集;(2)化简不等式f(x)>﹣x2,得:(x+1)[1+ln(x+1)]>kx

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论