云南省文山市2024届数学高二第二学期期末调研试题含解析_第1页
云南省文山市2024届数学高二第二学期期末调研试题含解析_第2页
云南省文山市2024届数学高二第二学期期末调研试题含解析_第3页
云南省文山市2024届数学高二第二学期期末调研试题含解析_第4页
云南省文山市2024届数学高二第二学期期末调研试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省文山市2024届数学高二第二学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.给出下列三个命题:①“若,则”为假命题;②若为真命题,则,均为真命题;③命题,则.其中正确的个数是()A.0 B.1 C.2 D.32.定义在上的奇函数满足,且在上单调递增,则下列结论中正确的是()A.B.C.D.3.展开式的系数是()A.-5 B.10 C.-5 D.-104.若,则A.10 B.15 C.30 D.605.若复数(为虚数单位)是纯虚数,则实数()A. B. C.0 D.16.过抛物线的焦点F的直线与抛物线交于A、B两点,且,为坐标原点,则的面积与的面积之比为A. B. C. D.27.平面与平面平行的条件可以是()A.内有无穷多条直线都与平行B.内的任何直线都与平行C.直线,直线,且D.直线,且直线不在平面内,也不在平面内8.演绎推理“因为时,是的极值点,而对于函数,,所以0是函数的极值点.”所得结论错误的原因是()A.大前提错误 B.小前提错误 C.推理形式错误 D.全不正确9.某校组织《最强大脑》赛,最终、两队讲入决赛,两队各由3名选手组成,每局两队各派一名洗手,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分.假设每局比赛队选手获胜的概率均为,且各局比赛结果相互独立,比赛结束时队的得分高于队的得分的概率为()A. B. C. D.10.设随机变量的分布列为,则()A.3 B.4 C.5 D.611.设两个正态分布和的密度函数图像如图所示.则有()A.B.C.D.12.函数的图象大致为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,其中实数,则__________.14.已知两不共线的非零向量满足,,则向量与夹角的最大值是__________.15.请列举用0,1,2,3这4个数字所组成的无重复数字且比230大的所有三位偶数______.16.已知点均在表面积为的球面上,其中平面,,则三棱锥的体积的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知:方程表示焦点在轴上的椭圆;:双曲线的实轴长大于虚轴长.若命题“”为真命题,“”为假命题,求的取值范围.18.(12分)如图,已知、两个城镇相距20公里,设是中点,在的中垂线上有一高铁站,的距离为10公里.为方便居民出行,在线段上任取一点(点与、不重合)建设交通枢纽,从高铁站铺设快速路到处,再铺设快速路分别到、两处.因地质条件等各种因素,其中快速路造价为1.5百万元/公里,快速路造价为1百万元/公里,快速路造价为2百万元/公里,设,总造价为(单位:百万元).(1)求关于的函数关系式,并指出函数的定义域;(2)求总造价的最小值,并求出此时的值.19.(12分)如图,在四棱锥E﹣ABCD中,底面ABCD是边长为2的正方形,且DE=,平面ABCD⊥平面ADE,∠ADE=30°(1)求证:AE⊥平面CDE;(2)求AB与平面BCE所成角的正弦值.20.(12分)(1)化简:;(2)若、为锐角,且,,求的值.21.(12分)已知等差数列的公差为,等差数列的公差为,设,分别是数列,的前项和,且,,.(1)求数列,的通项公式;(2)设,数列的前项和为,证明:.22.(10分)使用支付宝和微信支付已经成为广大消费者最主要的消费支付方式,某超市通过统计发现一周内超市每天的净利润(万元)与每天使用支付宝和微信支付的人数(千人)具有相关关系,并得到最近一周的7组数据如下表,并依此作为决策依据.周一周二周三周四周五周六周日131626222529307111522242734(Ⅰ)作出散点图,判断与哪一个适合作为每天净利润的回归方程类型?并求出回归方程(,,,精确到);(Ⅱ)超市为了刺激周一消费,拟在周一开展使用支付宝和微信支付随机抽奖活动,总奖金7万元.根据市场调查,抽奖活动能使使用支付宝和微信支付消费人数增加6千人,7千人,8千人,9千人的概率依次为,,,.试决策超市是否有必要开展抽奖活动?参考数据:,,,.参考公式:,,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】试题分析:①若,则且,所以①正确;②若为真命题,则,应至少有一个是真命题,所以②错;③正确.考点:1.四种命题;2.命题的否定.2、D【解题分析】试题分析:由可得:,所以函数的周期,又因为是定义在R上的奇函数,所以,又在上单调递增,所以当时,,因此,,所以。考点:函数的性质。3、D【解题分析】

由题意利用二项展开式的通项公式,求出(1﹣x)5展开式x3的系数.【题目详解】解:根据(1﹣x)5展开式的通项公式为Tr+1=•(﹣x)r,令r=3,可得x3的系数是﹣=﹣10,故选:A.【题目点拨】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.4、B【解题分析】

分析:由于,与已知对比可得的值1.详解:由于,与已知对比可得故选B.点睛:本题考查二项式定理的应用,观察分析得到是关键,考查分析与转化的能力,属于中档题.5、A【解题分析】因为是纯虚数,6、D【解题分析】

设点位于第一象限,点,并设直线的方程为,将该直线方程与抛物线方程联立,利用韦达定理得出,由抛物线的定义得出点的坐标,可得出点的纵坐标的值,最后得出的面积与的面积之比为的值.【题目详解】设点位于第一象限,点,设直线的方程为,将该直线方程与抛物线方程联立,得,,由抛物线的定义得,得,,,,可得出,,故选:D.【题目点拨】本题考查抛物线的定义、直线与抛物线的综合问题,考查韦达定理在直线与抛物线综合问题中的应用,解题的关键在于利用抛物线的定义以及韦达定理求点的坐标,并将三角形的面积比转化为高之比来处理,考查运算求解能力,属于中等题。7、B【解题分析】

根据空间中平面与平面平行的判定方法,逐一分析题目中的四个结论,即可得到答案.【题目详解】平面α内有无数条直线与平面β平行时,两个平面可能平行也可能相交,故A不满足条件;平面α内的任何一条直线都与平面β平行,则能够保证平面α内有两条相交的直线与平面β平行,故B满足条件;直线a⊂α,直线b⊂β,且a∥β,b∥α,则两个平面可能平行也可能相交,故C不满足条件;直线a∥α,a∥β,且直线a不在α内,也不在β内,则α与β相交或平行,故D错误;故选B.【题目点拨】本题考查的知识点是空间中平面与平面平行的判定,熟练掌握面面平行的定义和判定方法是解答本题的关键.8、A【解题分析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为时,是的极值点,而对于函数,,所以0是函数的极值点.”中,

大前提:时,在两侧的符号如果不相反,则不是的极值点,故错误,

故导致错误的原因是:大前提错误,

故选:A.点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题9、C【解题分析】

先将队得分高于队得分的情况列举出来,然后进行概率计算.【题目详解】比赛结束时队的得分高于队的得分可分为以下种情况:第一局:队赢,第二局:队赢,第三局:队赢;第一局:队赢,第二局:队赢,第三局:队赢;第一局:队赢,第二局:队赢,第三局:队赢;则对应概率为:,故选:C.【题目点拨】本题考查独立事件的概率计算,难度较易.求解相应事件的概率,如果事件不符合特殊事件形式,可从“分类加法”的角度去看事件,然后再将结果相加.10、C【解题分析】分析:根据方差的定义计算即可.详解:随机变量的分布列为,则则、故选D点睛:本题考查随机变量的数学期望和方差的求法,是中档题,解题时要认真审题,注意方差计算公式的合理运用.11、A【解题分析】根据正态分布函数的性质:正态分布曲线是一条关于对称,在处取得最大值的连续钟形曲线;越大,曲线的最高点越底且弯曲较平缓;反过来,越小,曲线的最高点越高且弯曲较陡峭,选A.12、C【解题分析】函数f(x)=()cosx,当x=时,是函数的一个零点,属于排除A,B,当x∈(0,1)时,cosx>0,<0,函数f(x)=()cosx<0,函数的图象在x轴下方.排除D.故答案为C。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:由题,利用二项展开式即可求得.详解:根据题意,则即答案为.点睛:本题考查二项展开式及展开式的系数,属中档题.14、【解题分析】

设向量夹角为,由余弦定理求得,再利用基本不等式求得取得最小值,即可求得的最大值,得到结果.【题目详解】因为两非零向量满足,,设向量夹角为,由于非零向量以及构成一个三角形,设,则由余弦定理可得,解得,当且仅当时,取得最小值,所以的最大值是,故答案是.【题目点拨】该题考查的是有关向量夹角的大小问题,在解题的过程中,涉及到的知识点有余弦定理,基本不等式,注意当什么情况下取得最值,再者就是需要明确角取最大值的时候其余弦值最小.15、310,302,320,312【解题分析】

根据题意,分别讨论个位数字是0和个数数字是2两种情况,即可得出结果.【题目详解】由0,1,2,3这4个数字所组成的无重复数字且比230大的所有三位偶数有:(1)当个位数字是0时,数字可以是:310,320;(2)当个数数字是2时,数字可以是:302,312.故答案为:310,302,320,312.【题目点拨】本题主要考查简单的排列问题,只需按要求列举即可,属于基础题型.16、【解题分析】分析:先求出球的半径,再求出三棱锥的体积的表达式,最后求函数的最大值.详解:设球的半径为R,所以设AB=x,则,由余弦定理得设底面△ABC的外接圆的半径为r,则所以PA=.所以三棱锥的体积=.当且仅当x=时取等.故答案为点睛:(1)本题主要考查球的体积和几何体的外接球问题,考查基本不等式,意在考查学生对这些基础知识的掌握能力和空间想象能力.(2)三元基本不等式:,当且仅当a=b=c>0时取等.(3)函数的思想是高中数学的重要思想,一般是先求出函数的表达式,再求函数的定义域,再求函数的最值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解题分析】试题分析:若真,则,解得的范围,若真,则,且,解得的范围,由为真命题,为假命题,可得,中有且只有一个为真命题,即必一真一假,即可求得的范围.试题解析:若真,则,解得:.若真,则,且,解得:.∵为真命题,为假命题∴,中有且只有一个为真命题,即必一真一假①若真假,则即;②若假真,则即.∴实数的取值范围为:点睛:根据命题的真假求参数的取值范围的方法:(1)求出当命题,为真命题时所含参数的取值范围;(2)判断命题,的真假性;(3)根据命题的真假情况,利用集合交集和补集的运算,求解参数的取值范围.18、(1),()(2)最小值为,此时【解题分析】

(1)由题意,根据三角形的性质,即可得到;(2)构造函数,利用导数求得函数的单调性,即可求解函数的最值.【题目详解】(1),,,,(2)设则令,又,所以.当,,,单调递减;当,,,单调递增;所以的最小值为.答:的最小值为(百万元),此时【题目点拨】本题主要考查了函数的实际应用问题,以及利用导数求解函数单调性与最值问题,其中解答中认真审题,合理建立函数的关系式,准确利用导数求解函数的单调性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.19、(1)详见解析;(2).【解题分析】

(1)根据线面垂直的判定定理,可直接得出结论成立;(2)以为原点,直线,分别为轴,过点作与直线平行的直线为轴,建立空间直角坐标系,分别求出直线的方向向量与平面的法向量,根据向量夹角的余弦值,即可求出结果.【题目详解】解:(1)证明:平面平面,交线为,且平面,从而,又,由余弦定理得,即又,平面.(2)以为原点,直线,分别为轴,过点作与直线平行的直线为轴,建立空间直角坐标系.则,,设,,,所以平面BCE的法向量与平面所成角的正弦弦值【题目点拨】本题主要考查线面垂直的判定,以及空间向量的方法求线面角,熟记线面垂直的判定定理,以及空间向量的方法求解,即可得出结果.20、(1);(2).【解题分析】

(1)利用诱导公式对代数式进行化简即可;(2)根据,得出、的取值范围,利用同角三角函数的基本关系计算出和,再利用两角差的余弦公式得出的值.【题目详解】(1);(2)因为、为锐角,且,,,,所以,,.【题目点拨】本题考查诱导公式化简,考查利用两角差的余弦公式求值,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论