版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省宣威五中2024届数学高二第二学期期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是等差数列.下列结论中正确的是()A.若,则 B.若,则C.若,则 D.若,则2.已知全集U={x∈Z|0<x<10},集合A={1,2,3,4},B={x|x=2a,a∈A},则(∁UA)∩B=()A.{6,8} B.{2,4} C.{2,6,8} D.{4,8}3.函数与在同一坐标系中的图象可能是()A. B.C. D.4.某人射击一次命中目标的概率为,则此人射击6次,3次命中且恰有2次连续命中的概率为()A. B. C. D.5.已知二项式,且,则()A. B. C. D.6.若关于的不等式恒成立,则实数的取值范围()A. B. C. D.7.定义在(0,+∞)上的函数f(x)的导数满足x2<1,则下列不等式中一定成立的是()A.f()+1<f()<f()﹣1 B.f()+1<f()<f()﹣1C.f()﹣1<f()<f()+1 D.f()﹣1<f()<f()+18.某班级要从四名男生、两名女生中选派四人参加某次社区服务,则所选的四人中至少有一名女生的选法为()A. B. C. D.9.已知集合,,则=()A. B. C. D.10.有7名女同学和9名男同学,组成班级乒乓球混合双打代表队,共可组成()A.7队 B.8队 C.15队 D.63队11.已知随机变量服从正态分布,,则A. B. C. D.12.独立性检验中,假设:运动员受伤与不做热身运动没有关系.在上述假设成立的情况下,计算得的观测值.下列结论正确的是A.在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动有关B.在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动无关C.在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动有关D.在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动无关二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的前项和为,_____;14.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表的第1行第4列数由左到右由上到下开始读取,则选出来的第5个个体的编号为____.第1行78166571023060140102406090280198第2行3204923449358200362348696938748115.在如图三角形数阵中,从第3行开始,每一行除1以外,其它每一个数字是它上一行的左右两个数字之和.已知这个三角形数阵开头几行如图所示,若在此数阵中存在某一行,满足该行中有三个相邻的数字之比为,则这一行是第__________行(填行数).16.若关于的方程有两个不相等的实数根,则实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)=m(1)当n-m=1时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-3m2x2的两个零点分别为x1,x2(18.(12分)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.(Ⅰ)随机选取1件产品,求能够通过检测的概率;(Ⅱ)随机选取3件产品,其中一等品的件数记为,求的分布列;(Ⅲ)随机选取3件产品,求这三件产品都不能通过检测的概率.19.(12分)已知矩形内接于圆柱下底面的圆O,是圆柱的母线,若,,异面直线与所成的角为,求此圆柱的体积.20.(12分)如图所示,在四棱锥中,平面,,,是的中点,是上的点,且,为中边上的高.(1)证明:平面;(2)若,,,求三棱锥的体积.21.(12分)长时间用手机上网严重影响着学生的健康,某校为了解A,B两班学生手机上网的时长,分别从这两个班中随机抽取6名同学进行调查,将他们平均每周手机上网时长作为样本数据,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).如果学生平均每周手机上网的时长大于21小时,则称为“过度用网”(1)请根据样本数据,分别估计A,B两班的学生平均每周上网时长的平均值;(2)从A班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度用网”的概率;(3)从A班、B班的样本中各随机抽取2名学生的数据,记“过度用网”的学生人数为,写出的分布列和数学期望E.22.(10分)甲、乙两企业生产同一种型号零件,按规定该型号零件的质量指标值落在内为优质品.从两个企业生产的零件中各随机抽出了件,测量这些零件的质量指标值,得结果如下表:甲企业:分组频数5乙企业:分组频数55(1)已知甲企业的件零件质量指标值的样本方差,该企业生产的零件质量指标值X服从正态分布,其中μ近似为质量指标值的样本平均数(注:求时,同一组中的数据用该组区间的中点值作代表),近似为样本方差,试根据企业的抽样数据,估计所生产的零件中,质量指标值不低于的产品的概率.(精确到)(2)由以上统计数据完成下面列联表,并判断能否在犯错误的概率不超过的前提下认为两个企业生产的零件的质量有差异.甲厂乙厂总计优质品非优质品总计附:参考数据:,参考公式:若,则,,;
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
先分析四个答案,A举一反例,而,A错误,B举同样反例,,而,B错误,D选项,故D错,下面针对C进行研究,是等差数列,若,则设公差为,则,数列各项均为正,由于,则,故选C.考点:本题考点为等差数列及作差比较法,以等差数列为载体,考查不等关系问题,重点是对知识本质的考查.2、A【解题分析】
先化简已知条件,再求.【题目详解】由题得,因为,,故答案为A【题目点拨】本题主要考查集合的化简,考查集合的补集和交集运算,意在考查学生对这些知识的掌握水平.3、C【解题分析】
由二次函数中一次项系数为0,我们易得函数的图象关于轴对称,然后分当时和时两种情况,讨论函数的图象与函数的图象位置、形状、顶点位置,可用排除法进行解答.【题目详解】由函数中一次项系数为0,我们易得函数的图象关于轴对称,可排除;当时,函数的图象开口方向朝下,顶点点在轴下方,函数的图象位于第二、四象限,可排除;时,函数的图象开口方向朝上,顶点点在轴上方,可排除A;故选C.【题目点拨】本题考查的知识点是函数的表示方法(图象法),熟练掌握二次函数及反比例函数图象形状与系数的关系是解答本题的关键.4、C【解题分析】
根据n次独立重复试验中恰好发生k次的概率,可得这名射手射击命中3次的概率,再根据相互独立事件的概率乘法运算求得结果.【题目详解】根据射手每次射击击中目标的概率是,且各次射击的结果互不影响,故此人射击6次,3次命中的概率为,恰有两次连续击中目标的概率为,故此人射击6次,3次命中且恰有2次连续命中的概率为.故选B【题目点拨】本题主要考查独立重复试验的概率问题,熟记概念和公式即可,属于常考题型.5、D【解题分析】
把二项式化为,求得其展开式的通项为,求得,再令,求得,进而即可求解.【题目详解】由题意,二项式展开式的通项为,令,可得,即,解得,所以二项式为,则,令,即,则,所以.【题目点拨】本题主要考查了二项式定理的应用,其中解答中把二项式,利用二项式通项,合理赋值求解是解答的关键,着重考查了推理与运算能力,属于基础题.6、B【解题分析】
恒成立等价于恒成立,令,则问题转化为,对函数求导,利用导函数求其最大值,进而得到答案。【题目详解】恒成立等价于恒成立,令,则问题转化为,,令,则,所以当时,所以在单调递减且,所以在上单调递增,在上的单调递减,当时,函数取得最大值,,所以故选B【题目点拨】本题考查利用导函数解答恒成立问题,解题的关键是构造函数,属于一般题。7、D【解题分析】
构造函数g(x)=f(x),利用导数可知函数在(0,+∞)上是减函数,则答案可求.【题目详解】由x2f′(x)<1,得f′(x),即得f′(x)0,令g(x)=f(x),则g′(x)=f′(x)0,∴g(x)=f(x)在(0,+∞)上为单调减函数,∴f()+2<f()+3<f()+4,则f()<f()+1,即f()﹣1<f();f()<f()+1.综上,f()﹣1<f()<f()+1.故选:D.【题目点拨】本题考查利用导数研究函数的单调性,正确构造函数是解题的关键,是中档题.8、A【解题分析】所选的四人中至少有一名女生的选法为本题选择A选项.9、C【解题分析】
先计算集合N,再计算得到答案.【题目详解】故答案选C【题目点拨】本题考查了集合的运算,属于简单题.10、D【解题分析】
根据题意,分析可得男队员的选法有7种,女队员的选法有9种,由分步计数原理计算可得答案.【题目详解】根据题意,有7名女同学和9名男同学,组成班级乒乓球混合双打代表队,则男队员的选法有7种,女队员的选法有9种,由分步乘法计数原理,知共可组成组队方法;故选:.【题目点拨】本题主要考查分步计数原理的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.11、D【解题分析】
,选D.12、A【解题分析】
先找到的临界值,根据临界值表找到犯错误的概率,即对“运动员受伤与不做热身运动没有关系”可下结论。【题目详解】,因此,在犯错误的概率不超过的前提下,认为运动员受伤与不做热身运动有关,故选:A。【题目点拨】本题考查独立性检验,根据临界值表找出犯错误的概率是解这类问题的关键,考查运算求解能力,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、70【解题分析】
设等差数列的公差为,由等差数列的通项公式,结合可列出两个关于的二元一次方程,解这个二元一次方程组,求出的值,再利用等差数列的前项和公式求出的值.【题目详解】设等差数列的公差为,由可得:,【题目点拨】本题考查了等差数列基本量的求法,熟记公式、正确解出方程组的解,是解题的关键.本题根据等差数列的性质,可直接求解:,.14、02;【解题分析】
第1行第4列数是6,由左到右进行读取10,06,01,09,02.【题目详解】第1行第4列数是6,由左到右进行读取10,06,01,09,02,所以第5个个体的编号为02.【题目点拨】随机数表中如果个体编号是2位数,则从规定的地方数起,是每次数两位数,如果碰到超出编号范围,则不选;如果碰到选过的,也不选.15、98【解题分析】
通过杨辉三角可知每一行由二项式系数构成,于是可得方程组,求出行数.【题目详解】三角形数阵中,每一行的数由二项式系数,组成.如多第行中有,,那么,解得,因此答案为98.【题目点拨】本题主要考查杨辉三角,二项式定理,意在考查学生数感的建立,计算能力及分析能力,难度中等.16、【解题分析】
关于的方程有两个不相等的实数根,可转化为求有两个不同的解的问题,令,分析的单调性和图像,从而求出c的取值范围.【题目详解】引入函数,则,易知在上单调递减,在上单调递增,所以.又分析知,当时,;当时,;当时,,所以,所以.【题目点拨】本题考查利用导数求函数的零点问题,解题的关键是利用导数讨论函数的单调性,此题属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解题分析】
(1)先求导数,再根据导函数零点分类讨论,最后根据导函数符号确定单调区间,(2)先求导数得函数g(x)的图像在x=x【题目详解】(1)∵所以当m≤0时,f'(x)=0⇒x=1,所以增区间(0,1)当0<m<1时,f'(x)=0⇒x=1,x=1m>1当m=1时,f'(x)≥0,所以增区间当m>1时,f'(x)=0⇒x=1,x=1m(2)因为g(x)=f(x)-3m所以g'因此函数g(x)的图像在x=x0因为函数g(x)的两个零点分别为x1所以m即(m(所以g令h(t)=-lnt+所以h(t)<h(1)=0,从而g【题目点拨】本题考查利用导数研究函数单调性以及利用导数证明不等式,考查综合分析求解能力,属难题.18、(1);(2)分布列见解析;(3).【解题分析】
(Ⅰ)设随机选取一件产品,能够通过检测的事件为A,事件A包括两种情况,一是抽到的是一个一等品,二是抽到的是一个二等品,这两种情况是互斥的,根据互斥事件的概率公式得到结果;(II)由题意知X的可能取值是0,1,2,3,结合变量对应的事件和等可能事件的概率,写出变量的概率,写出分布列;(III)随机选取3件产品,这三件产品都不能通过检测,包括两个环节,第一这三个产品都是二等品,且这三件都不能通过检测,根据相互独立事件同时发生的概率得到结果.【题目详解】(Ⅰ)设随机选取一件产品,能够通过检测的事件为事件等于事件“选取一等品都通过检测或者是选取二等品通过检测”;(Ⅱ)由题可知可能取值为0,1,2,3.,,,.故的分布列为
0
1
2
3
(Ⅲ)设随机选取3件产品都不能通过检测的事件为事件等于事件“随机选取3件产品都是二等品且都不能通过检测”所以,.【题目点拨】本题考查离散型随机变量的分布列,考查等可能事件的概率,本题是一个概率的综合题目19、【解题分析】
根据底面圆的内接矩形的长和宽求出圆的半径,再由母线垂直于底面和“异面直线与所成的角为”求出母线长,代入圆柱的体积公式求出值.【题目详解】解:设圆柱下底面圆的半径为,连,由矩形内接于圆,可知是圆的直径,,得,由,可知就是异面直线与所成的角,即,.在直角三角形中,,圆柱的体积.【题目点拨】本题考查了圆柱的体积求法,主要根据圆内接矩形的性质、母线垂直于底面圆求出它的底面圆半径和母线,即关键求出半径和母线长即可.20、(1)证明见解析;(2).【解题分析】
(1)通过证明,证得线面垂直;(2)求出点到平面的距离,利用锥体体积公式即可得解.【题目详解】(1)因为平面,平面,所以,又因为为中边上的高,所以,,平面,平面,所以平面.(2),因为是中点,平面,所以点到平面的距离为,于是.【题目点拨】此题考查证明线面垂直和求锥体的体积,关键在于熟练掌握线面垂直的判定定理,准确求出点到平面的距离,根据公式计算得解.21、(1)19小时;22小时.(2)(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新世纪版选修3物理下册月考试卷含答案
- 二零二五年度设备租赁担保合同登记及终止操作规范3篇
- 2024年车辆租用安全合同标准范本版B版
- 2025年沪科版选修4化学下册月考试卷含答案
- 2025年湘教版八年级生物上册阶段测试试卷含答案
- 幼儿园师德师风培训内容
- 2025年度水果采摘与农家乐一体化服务合同3篇
- 黑龙江大庆市(2024年-2025年小学六年级语文)部编版能力评测(下学期)试卷及答案
- 医学实习报告范例及评价建议
- 甘肃省武威市(2024年-2025年小学六年级语文)统编版随堂测试(上学期)试卷及答案
- 院内2期及以上压力性损伤的管理与持续改进
- 中考名著《骆驼祥子》测试题及答案
- 高中体育课程活动方案
- 小学中高年段语文学科基于课程标准评价指南
- 和解协议装修合同纠纷
- 跆拳道专业队训练计划书
- DL-T1848-2018220kV和110kV变压器中性点过电压保护技术规范
- 实景三维地理信息元数据规范
- 意识障碍的判断及护理
- (高清版)JTGT 3650-01-2022 公路桥梁施工监控技术规程
- 数据资产入表理论与实践
评论
0/150
提交评论