版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省八市2024届高二数学第二学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示阴影部分是由函数、、和围成的封闭图形,则其面积是()A. B. C. D.2.若双曲线的一条渐近线经过点,则此双曲线的离心率为()A. B. C. D.3.已知随机变量服从正态分布,若,则()A. B. C. D.4.已知l、m、n是空间三条直线,则下列命题正确的是()A.若l//m,l//n,则m//nB.若l⊥m,l⊥n,则m//nC.若点A、B不在直线l上,且到l的距离相等,则直线AB//lD.若三条直线l、m、n两两相交,则直线l、m、n共面5.定义在上的函数满足,,则不等式的解集为()A. B. C. D.6.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=2x-3A.-1 B.1 C.-2 D.27.若函数,则()A.1 B. C.27 D.8.已知全集,,则()A. B. C. D.9.将两个随机变量之间的相关数据统计如表所示:根据上述数据,得到的回归直线方程为,则可以判断()A. B. C. D.10.魏晋时期数学家刘徽在他的著作九章算术注中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”,刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为:若正方体的棱长为2,则“牟合方盖”的体积为A.16 B. C. D.11.已知集合,则=()A. B. C. D.12.下列说法错误的是A.回归直线过样本点的中心B.两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C.在回归直线方程中,当解释变量x每增加1个单位时,预报变量平均增加个单位D.对分类变量X与Y,随机变量的观测值k越大,则判断“X与Y有关系”的把握程度越小二、填空题:本题共4小题,每小题5分,共20分。13.一个高为1的正三棱锥的底面正三角形的边长为6,则此三棱锥的侧面积为______.14.已知直线上总存在点,使得过点作的圆:的两条切线互相垂直,则实数的取值范围是______.15.是正四棱锥,是正方体,其中,,则到平面的距离为________16.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,1002),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1100小时的概率为_________(附:若随机变量Z服从正态分布N(μ,σ2),则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的前项和.已知.(1)求数列的通项公式;(2)是否对一切正整数,有?说明理由.18.(12分)数列满足.(1)计算,并由此猜想通项公式;(2)用数学归纳法证明(1)中的猜想.19.(12分)如图,已知点是椭圆上的任意一点,直线与椭圆交于,两点,直线,的斜率都存在.(1)若直线过原点,求证:为定值;(2)若直线不过原点,且,试探究是否为定值.20.(12分)十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加.为了制定提升农民年收入、实现2020年脱贫的工作计划,该地扶贫办统计了2019年50位农民的年收入并制成如下频率分布直方图:(1)根据频率分布直方图,估计50位农民的年平均收入元(单位:千元)(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布,其中近似为年平均收入,近似为样本方差,经计算得,利用该正态分布,求:(i)在扶贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?附参考数据:,若随机变量X服从正态分布,则,,.21.(12分)如果球、正方体与等边圆柱(底面直径与母线相等)的体积相等,求它们的表面积的大小关系.22.(10分)如图,平面,,,,,是的中点.(1)求证:平面;(2)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据定积分的几何意义得到阴影部分的面积。【题目详解】由定积分的几何意义可知:阴影部分面积故选B.【题目点拨】本题考查定积分的几何意义和积分运算,属于基础题.2、D【解题分析】因为双曲线的一条渐近线经过点(3,-4),故选D.考点:双曲线的简单性质【名师点睛】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形结合上找突破口.与渐近线有关的结论或方法还有:(1)与双曲线共渐近线的可设为;(2)若渐近线方程为,则可设为;(3)双曲线的焦点到渐近线的距离等于虚半轴长;(4)的一条渐近线的斜率为.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.另外解决不等式恒成立问题关键是等价转化,其实质是确定极端或极限位置.3、C【解题分析】分析:先根据正态分布得再求最后求得=0.34.详解:由正态分布曲线得所以所以=0.5-0.16=0.34.故答案为:C.点睛:(1)本题主要考查正态分布曲线的性质,意在考查学生对这些知识的掌握水平和数形结合思想和方法.(2)解答本题的关键是数形结合,要结合正态分布曲线的图像和性质解答,不要死记硬背.4、A【解题分析】分析:由公理4可判断A,利用空间直线之间的位置关系可判断B,C,D的正误,从而得到答案.详解:由公理4可知A正确;若l⊥m,l⊥n,则m∥n或m与n相交或异面,故B错误;若点A、B不在直线l上,且到l的距离相等,则直线AB∥l或AB与l异面,故C错误;若三条直线l,m,n两两相交,且不共点,则直线l,m,n共面,故D错误.故选A.点睛:本题考查命题的真假判断与应用,着重考查空间中直线与直线之间的位置关系,掌握空间直线的位置关系是判断的基础,对于这种题目的判断一般是利用课本中的定理和性质进行排除,判断.还可以画出样图进行判断,利用常见的立体图形,将点线面放入特殊图形,进行直观判断.5、B【解题分析】
由已知条件构造辅助函数g(x)=f(x)+lnx,求导,根据已知求得函数的单调区间,结合原函数的性质和函数值,即可的解集.【题目详解】令g(x)=f(x)+lnx(x>0),则g'(x)=,又函数满足,∴g'(x)=,g(x)在单调递增.∵,∴,∴当,,当,,∴当,则不等式成立.故选:B.【题目点拨】本题主要考查导数在研究函数中的应用和函数综合,一般采用构造函数法,求导后利用条件判断函数的单调性,再根据特殊值解出不等式所对应的区间即可,属于中等题.6、A【解题分析】
先求出f2,再利用奇函数的性质得f【题目详解】由题意可得,f2=22-3=1因此,f-2=-f【题目点拨】本题考查利用函数的奇偶性求值,解题时要注意结合自变量选择解析式求解,另外就是灵活利用奇偶性,考查计算能力,属于基础题。7、C【解题分析】
求导后代入可构造方程求得,从而得到,代入可求得结果.【题目详解】,,解得:,,.故选:.【题目点拨】本题考查导数值的求解问题,关键是能够明确为实数,其导数为零.8、C【解题分析】
根据补集的定义可得结果.【题目详解】因为全集,,所以根据补集的定义得,故选C.【题目点拨】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.9、C【解题分析】
根据最小二乘法,求出相关量,,即可求得的值。【题目详解】因为,,,所以,,故选C。【题目点拨】本题主要考查利用最小二乘法求线性回归方程,意在考查学生的数学运算能力。10、C【解题分析】
由已知求出正方体内切球的体积,再由已知体积比求得“牟合方盖”的体积.【题目详解】正方体的棱长为2,则其内切球的半径,正方体的内切球的体积,又由已知,.故选C.【题目点拨】本题考查球的体积的求法,理解题意是关键,是基础题.11、D【解题分析】分析:直接利用交集的定义求解.详解:集合,,故选D.点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.本题需注意两集合一个是有限集,一个是无限集,按有限集逐一验证为妥.12、D【解题分析】
分析:A.两个变量是线性相关的,则回归直线过样本点的中心B.两个随机变量的线性相关线越强,则相关系数的绝对值就越接近于1;C.在回归直线方程中,当解释变量每增加1个单位时,预报变量平均增加0.2个单位D.正确.详解:A.两个变量是线性相关的,则回归直线过样本点的中心;B.两个随机变量的线性相关线越强,则相关系数的绝对值就越接近于1;C.在回归直线方程中,当解释变量每增加1个单位时,预报变量平均增加0.2个单位D.错误,随机变量的观测值k越大,则判断“X与Y有关系”的把握程度越大故选:D.点睛:本题考查了两个变量的线性相关关系的意义,线性回归方程,相关系数,以及独立性检验等,是概念辨析问题.二、填空题:本题共4小题,每小题5分,共20分。13、18【解题分析】
画出满足题意的三棱锥P-ABC图形,根据题意,画出高,利用直角三角形,求出此三棱锥的侧面上的高,即可求出棱锥的侧面积.【题目详解】由题意画出图形,如图所示:因为三棱锥P-ABC是正三棱锥,顶点在底面上的射影D是底面的中心,在三角形PDF中:因为三角形PDF三边长PD=1,DF=3所以PF=2,则这个棱锥的侧面积S=3×故答案为:18。【题目点拨】本题考查棱柱、棱锥、棱台的侧面积和表面积和棱锥的结构特征,考查数形结合思想,还考查计算能力,是基础题,棱锥的侧面积是每一个侧面的面积之和。14、【解题分析】分析:若直线l上总存在点M使得过点M的两条切线互相垂直,只需圆心(﹣1,2)到直线l的距离,即可求出实数m的取值范围.详解:如图,设切点分别为A,B.连接AC,BC,MC,由∠AMB=∠MAC=∠MBC=90°及MA=MB知,四边形MACB为正方形,故,若直线l上总存在点M使得过点M的两条切线互相垂直,只需圆心(﹣1,2)到直线l的距离,即m2﹣8m﹣20≤0,∴﹣2≤m≤10,故答案为:﹣2≤m≤10.点睛:(1)本题主要考查直线和圆的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力数形结合的思想方法.(2)解答本题的关键是分析出.15、【解题分析】
以为轴,为轴,为轴建立空间直角坐标系,求出平面的法向量,的坐标,利用距离公式,即可得到结论.【题目详解】解:以为轴,为轴,为轴建立空间直角坐标系,
设平面的法向量是,
,
∴由,可得
取得,
,
∴到平面的距离.故答案为:.【题目点拨】本题考查点到平面的距离,考查向量知识的运用,考查学生的计算能力,属于中档题.16、【解题分析】
先通过信息计算出每个电子元件使用寿命超过1100小时的概率,再计算该部件的使用寿命超过1100小时的概率.【题目详解】由于三个电子元件的使用寿命都符合正态分布N(1000,1002),且.每个电子元件使用寿命超过1100小时的概率故该部件的使用寿命超过1100小时的概率【题目点拨】本题考查正态分布的性质应用及相互独立事件的概率求解,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)对一切正整数,有.【解题分析】
(1)运用数列的递推式,结合等差数列的定义和通项公式,可得所求;(2)对一切正整数n,有,考虑当时,,再由裂项相消求和,即可得证。【题目详解】(1)当时,两式做差得,,当时,上式显然成立,。(2)证明:当时,可得由可得即有<则当时,不等式成立。检验时,不等式也成立,综上对一切正整数n,有。【题目点拨】本题考查数列递推式,考查数列求和,考查裂项法的运用,确定数列的通项是关键.18、(1);(2)见解析【解题分析】分析:(1)根据题设条件,可求a1,a2,a3,a4的值,猜想{an}的通项公式.(2)利用数学归纳法的证明步骤对这个猜想加以证明.详解:(1)根据数列满足,当时,,即;当时,,即;同理,由此猜想;(2)当时,,结论成立;假设(为大于等于1的正整数)时,结论成立,即,那么当(大于等于1的正整数)时,∴,∴,即时,结论成立,则.点睛:此题主要考查归纳法的证明,归纳法一般三个步骤:(1)验证n=1成立;(2)假设n=k成立;(3)利用已知条件证明n=k+1也成立,从而求证,这是数列的通项一种常用求解的方法19、(1)见解析(2),详见解析【解题分析】
(1)设,,由椭圆对称性得,把点,的坐标都代入椭圆得到两个方程,再相减,得到两直线斜率乘积的表达式;(2)设,,,则,由得:,进而得到直线的方程,再与椭圆方程联立,利用韦达定理得到坐标之间的关系,最后整体代入消元,得到为定值.【题目详解】(1)当过原点时,设,,由椭圆对称性得,则.∵,都在椭圆上,∴,,两式相减得:,即.故.(2)设,,,则,∵,∴,设直线的方程为(),联立方程组消去,整理得.∵在椭圆上,∴,上式可化为.∴,,∴,,,∴;.∴(定值).【题目点拨】本题考查直线与椭圆的位置关系,对综合运算能力要求较高,对坐标法进行深入的考查,要求在运算过程中要大胆、耐心、细心地进行运算.20、(1)17.40千元;(2)(i)14.77千元.(ii)978人.【解题分析】
(1)求解每一组数据的组中值与频率的乘积,将结果相加即可得到对应的;(2)(i)根据的数值判断出年收入的取值范围,从而可计算出最低年收入;(ii)根据的数值判断出每个农民年收入不少于千元的概率,然后根据二项分布的概率计算公式计算出“恰有个农民年收入不少于”中的最大值即可.【题目详解】解:(1)千元故估计50位农民的年平均收入
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年三季度报天津地区A股流动负债合计排名前十大上市公司
- 课题申报参考:教育家精神赋能高校师德师风建设研究
- 二零二五版外资企业会计人员聘用与管理服务协议3篇
- 二零二五年环境治理担保合同标的属性与实施3篇
- 二零二五年度农产品批发市场合作协议书4篇
- 2025年湛江货运从业资格证怎么考
- 医院工作个人工作总结
- 二零二五版个体工商户雇工劳动合同(文创产业专用)3篇
- 2025年度智能交通设施安装与维护承包合作协议4篇
- 2025年度智慧家居虫害预防与治理服务合同4篇
- 2024年高纯氮化铝粉体项目可行性分析报告
- 安检人员培训
- 山东省潍坊市2024-2025学年高三上学期1月期末 英语试题
- 危险性较大分部分项工程及施工现场易发生重大事故的部位、环节的预防监控措施
- 《榜样9》观后感心得体会四
- 2023事业单位笔试《公共基础知识》备考题库(含答案)
- 化学-广东省广州市2024-2025学年高一上学期期末检测卷(一)试题和答案
- 2025四川中烟招聘高频重点提升(共500题)附带答案详解
- EHS工程师招聘笔试题与参考答案(某大型央企)2024年
- 营销策划 -丽亭酒店品牌年度传播规划方案
- 2025年中国蛋糕行业市场规模及发展前景研究报告(智研咨询发布)
评论
0/150
提交评论