




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省正定县第七中学数学高二第二学期期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,由不等式,,,…,类比推广到,则()A. B. C. D.2.已知函数与的图象上存在关于对称的点,则实数的取值范围是()A. B. C. D.3.某次战役中,狙击手A受命射击敌机,若要击落敌机,需命中机首2次或命中机中3次或命中机尾1次,已知A每次射击,命中机首、机中、机尾的概率分别为0.2、0.4、0.1,未命中敌机的概率为0.3,且各次射击相互独立。若A至多射击两次,则他能击落敌机的概率为()A.0.23 B.0.2 C.0.16 D.0.14.下列命题中真命题的个数是()①若样本数据,,…,的方差为16,则数据,,…,的方差为64;②“平面向量,夹角为锐角,则”的逆命题为真命题;③命题“,”的否定是“,”;④若:,:,则是的充分不必要条件.A.1 B.2 C.3 D.45.根据如图所示的程序框图,当输入的值为3时,输出的值等于()A.1 B. C. D.6.函数在其定义域内可导,的图象如图所示,则导函数的图象为()A. B.C. D.7.在等差数列中,若,,则()A. B.1 C. D.8.在满分为15分的中招信息技术考试中,初三学生的分数,若某班共有54名学生,则这个班的学生该科考试中13分以上的人数大约为()(附:)A.6 B.7 C.9 D.109.已知集合A={x|x2-6x+5≤0},B={x|y=A.1,2 B.1,210.设函数,集合,则图中的阴影部分表示的集合为()A. B.C. D.11.已知直线与双曲线分别交于点,若两点在轴上的射影恰好是双曲线的两个焦点,则双曲线的离心率为()A. B. C.4 D.12.已知,且,则a=()A.﹣1 B.2或﹣1 C.2 D.﹣2二、填空题:本题共4小题,每小题5分,共20分。13.求函数的单调增区间是__________.14.三棱锥P﹣ABC中,PA=PB=AB=AC=BC,M是PA的中点,N是AB的中点,当二面角P﹣AB﹣C为时,则直线BM与CN所成角的余弦值为______.15.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”外接球表面积为________16.已知平面向量,满足||=1,||=2,|﹣|=,则在方向上的投影是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和为,且,.(1)求数列的通项公式;(2)求数列的前项和为.18.(12分)从某市主办的科技知识竞赛的学生成绩中随机选取了40名学生的成绩作为样本,已知这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组,第一组[40,50);第二组[50,60);…;第六组[90,100],并据此绘制了如图所示的频率分布直方图.(1)求成绩在区间[80,90)内的学生人数;(2)从成绩大于等于80分的学生中随机选取2名,求至少有1名学生的成绩在区间[90,100]内的概率.19.(12分)已知函数.(1)若是的一个极值点,判断的单调性;(2)若有两个极值点,,且,证明:.20.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(a为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求C的普通方程和l的倾斜角;(2)设点,l和C交于A,B两点,求.21.(12分)某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在,按照区间,,,,进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.完成表格,并判断是否有以上的把握认为“数学成绩优秀与教学改革有关”;(2)从乙班,,分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自发言的人数为随机变量,求的分布列和期望.22.(10分)在平面直角坐标系中,直线的参数方程为(为参数,),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程与曲线的直角坐标方程;(2)若直线与曲线交于、两点,求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】由已知中不等式:归纳可得:不等式左边第一项为,第二项为,右边为,故第个不等式为:,故,故选D.【方法点睛】本题通过观察几组不等式,归纳出一般规律来考察归纳推理,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.2、D【解题分析】
由题意可知有解,即在有解,求导数,确定函数的单调性,可知m的范围.【题目详解】∵函数与的图象上存在关于对称的点,∴有解,∴,∴在有解,,∴函数在上单调递增,在上单调递增,∴,故选D.【题目点拨】本题考查利用导数求最值,考查对称性的运用,关键是转化为在有解,属于中档题.3、A【解题分析】每次射击,命中机首、机中、机尾的概率分别为,未命中敌机的概率为,且各次射击相互独立,若射击一次就击落敌机,则他击中利敌机的机尾,故概率为;若射击次就击落敌机,则他次都击中利敌机的机首,概率为;或者第一次没有击中机尾、且第二次击中了机尾,概率为,若至多射击两次,则他能击落敌机的概率为,故选.4、C【解题分析】分析:对四个命题逐一分析即可.详解:对于①,由方差的性质得:则数据,,…,的方差为,故正确;对于②,逆命题为平面向量,满足,则向量,夹角为锐角,是假命题,故错误;对于③,命题“,”的否定是“,”,正确;对于④,,,是的充分不必要条件,故正确.故选C.点睛:本题主要考查命题的真假判断,涉及知识点较多,综合性较强,但难度不大.5、C【解题分析】
根据程序图,当x<0时结束对x的计算,可得y值.【题目详解】由题x=3,x=x-2=3-1,此时x>0继续运行,x=1-2=-1<0,程序运行结束,得,故选C.【题目点拨】本题考查程序框图,是基础题.6、D【解题分析】分析:根据函数单调性、极值与导数的关系即可得到结论.详解:观察函数图象,从左到右单调性先单调递增,然后单调递减,最后单调递增.对应的导数符号为正,负,正.,选项D的图象正确.故选D.点睛:本题主要考查函数图象的识别和判断,函数单调性与导数符号的对应关系是解题关键.7、C【解题分析】
运用等差数列的性质求得公差d,再运用通项公式解得首项即可.【题目详解】由题意知,所以.故选C.【题目点拨】本题考查等差数列的通项公式的运用,等差数列的性质,考查运算能力,属于基础题.8、C【解题分析】
分析:现利用正态分布的意义和原则结合正态分布曲线的对称性,计算大于的概率,即可求解得到其人数.详解:因为其中数学考试成绩服从正态分布,因为,即根据正态分布图象的对称性,可得,所以这个班级中数学考试成绩在分以上的人数大约为人,故选C.点睛:本题主要考查了随机变量的概率分布中正态分布的意义和应用,其中熟记正态分布图象的对称性是解答的关键,着重考查了转化与化归思想方法的应用,属于基础题.9、C【解题分析】
由题意,集合A={x|1≤x≤5},B={x|x>2},再根据集合的运算,即可求解.【题目详解】由题意,集合A={x2-6x+5≤0}={x|1≤x≤5}所以A∩B={x|2<x≤5}=(2,5],故选C.【题目点拨】本题主要考查了对数函数的性质,以及不等式求解和集合的运算问题,其中解答中正确求解集合A,B,再根据集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解题分析】
根据集合的定义可知为定义域,为值域;根据对数型复合函数定义域的要求可求得集合,结合对数型复合函数单调性可求得值域,即集合;根据图可知阴影部分表示,利用集合交并补运算可求得结果.【题目详解】的定义域为:,即:在上单调递增,在上单调递减在上单调递增,在上单调递减;当时,;当时,的值域为:图中阴影部分表示:又,本题正确选项:【题目点拨】本题考查集合基本运算中的交并补混合运算,关键是能够明确两个集合表示的含义分别为函数的定义域和值域,利用对数型复合函数的定义域要求和单调性可求得两个集合;涉及到图的读取等知识.11、A【解题分析】
由直线与双曲线联立,可知x=为其根,整理可得.【题目详解】解:由.,两点在轴上的射影恰好是双曲线的两个焦点,..故选:.【题目点拨】本题考查双曲线的离心率,双曲线的有关性质和双曲线定义的应用,属于中档题.12、B【解题分析】
根据,可得,即可求解,得到答案.【题目详解】由题意,,且,则,解得或,故选B.【题目点拨】本题主要考查了共线向量的坐标表示及应用,其中解答中熟记共线向量的概念以及坐标表示是解答的关键,着重考查了推理与计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、或【解题分析】
求的导函数,利用,可得函数的单调递增区间.【题目详解】解:由,得令,可得故函数的单调递增区间是故答案为或.【题目点拨】本题考查导数知识的运用,函数求导,考查函数的单调性,属于基础题.14、【解题分析】
先连结PN,根据题意,∠PNC为二面角P-AB-C的平面角,得到∠PNC=,根据向量的方法,求出两直线方向向量的夹角,即可得出结果.【题目详解】解:连结PN,因为N为AB中点,PA=PB,CA=CB,所以,,所以,∠PNC为二面角P-AB-C的平面角,所以,∠PNC=,设PA=PB=AB=AC=BC=2,则CN=PN=BM=,,设直线BM与CN所成角为,,【题目点拨】本题主要考查异面直线所成的角,灵活运用向量法求解即可,属于常考题型.15、【解题分析】
由三视图还原几何体,可知该几何体为四棱锥,底面ABCD为矩形,.求出PC长度,可得四棱锥外接球的半径,代入球的表面积公式即可求得.【题目详解】由三视图还原几何体如图,该几何体为四棱锥,底面ABCD为矩形,,该几何体外接球的半径为.该“阳马”外接球表面积为.故答案为:.【题目点拨】本题考查三视图还原几何体,考查几何体外接球的表面积,难度较易.16、【解题分析】分析:根据向量的模求出•=1,再根据投影的定义即可求出.详解:∵||=1,||=2,|﹣|=,∴||2+||2﹣2•=3,解得•=1,∴在方向上的投影是=,故答案为点睛:本题考查了平面向量的数量积运算和投影的定义,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】试题分析:(1)利用和项与通项关系,当时,,将条件转化为项之间递推关系:,再构造等比数列:,根据等比数列定义及通项公式求得,即得;注意验证当时是否满足题意,(2)由于可裂成相邻两项之差:,所以利用裂项相消法求数列的前项和.试题解析:(Ⅰ)因为,故当时,;当时,,两式对减可得;经检验,当时也满足;故,故数列是以3为首项,3为公比的等比数列,故,即.(Ⅱ)由(Ⅰ)可知,,故.点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如或.18、(1)4;(2)P(A)=3【解题分析】试题分析:(Ⅰ)由各组的频率和等于1直接列式计算成绩在[80,90)的学生频率,用40乘以频率可得成绩在[80,90)的学生人数;
(试题解析:(1)因为各组的频率之和为1,所以成绩在区间[80,90)内的频率为所以选取的40名学生中成绩在区间[80,90)内的学生人数为(2)设A表示事件“在成绩大于等于80分的学生中随机选取2名,至少有1名学生的成绩在区间[90,100]内”,由(1)可知成绩在区间[80,90成绩在区间[90,100]内的学生有0.005×10×40=2(人),记这2名学生分别为则选取2名学生的所有可能结果为(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,事件“至少有1名学生的成绩在区间[90,100]内”的可能结果为(c,f),(d,e),(d,f),(e,f),共9种,所以P(A)=919、(1)在单调递减,在单调递增.(2)见解析【解题分析】
(1)求出导函数,由极值点求出参数,确定的正负得的单调性;(2)求出,得极值点满足:所以,由(1)即,不妨设.要证,则只要证,而,因此由的单调性,只要能证,即即可.令,利用导数的知识可证得结论成立.【题目详解】(1)由已知得.因为是的一个极值点,所以,即,所以,令,则,令,得,令,得;所以在单调递减,在单调递增,又当时,,,所以当时,,当时,;即在单调递减,在单调递增.(2),因此极值点满足:所以由(1)即,不妨设.要证,则只要证,而,因此由的单调性,只要能证,即即可.令,则,当时,,,,所以,即在单调递增,又,所以,所以,即,又,,在单调递增,所以,即.【题目点拨】本题考查导数的应用,利用导数研究函数的单调性、极值、最值等问题,考查抽象概括能力、推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想、有限与无限思想,体现综合性、应用性与创新性,导向对发展数学抽象、逻辑推理、直观想象、数学运算等核心素养的关注.20、(1)..(2).【解题分析】
(1)直接利用参数方程和极坐标方程公式得到普通方程,再计算倾斜角.(2)判断点在直线l上,建立直线参数方程,代入椭圆方程,利用韦达定理得到答案.【题目详解】(1)消去参数α得,即C的普通方程为.由,得,(*)将,代入(*),化简得,所以直线l的倾斜角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业新公司拓展活动方案
- 企业校园志愿活动方案
- 企业活动篮球活动方案
- 企业环保趣味活动方案
- 企业签约线上活动方案
- 企业联合活动方案
- 企业雷锋活动策划方案
- 伊利储值卡活动方案
- 伊犁烧烤活动策划方案
- 优化口岸通关活动方案
- 江苏省南京市建邺区2023-2024学年五年级下学期6月期末英语试题
- 2024年湖北省武汉市中考语文试卷真题(含答案)
- 福建省漳州市2023-2024学年八年级下学期期末数学试题
- ISO 15609-1 2019 金属材料焊接工艺规程和评定-焊接工艺规程-电弧焊(中文版)
- (正式版)JBT 106-2024 阀门的标志和涂装
- 医疗器械销售授权证书审批指南
- 陪诊公司推广方案
- 弥勒旅游策划方案
- 老年人中医养生知识健康讲座内容
- 隐孢子虫病健康宣教
- 车站调车作业-驼峰调车作业
评论
0/150
提交评论