




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省济南市数学高二第二学期期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数在复平面内对应的点在第四象限,则实数的取值范围是()A. B. C. D.2.关于函数有下述四个结论:①f(x)是偶函数②f(x)在区间(,)单调递增③f(x)在有4个零点④f(x)的最大值为2其中所有正确结论的编号是A.①②④ B.②④ C.①④ D.①③3.已知向量是空间的一组基底,则下列可以构成基底的一组向量是()A.,, B.,,C.,, D.,,4.设复数满足,则()A. B. C. D.5.在三棱锥P-ABC中,,,,若过AB的平面将三棱锥P-ABC分为体积相等的两部分,则棱PA与平面所成角的正弦值为()A. B. C. D.6.某校有高一学生n名,其中男生数与女生数之比为6:5,为了解学生的视力情况,现要求按分层抽样的方法抽取一个样本容量为n10的样本,若样本中男生比女生多12人,则n=(A.990 B.1320 C.1430 D.15607.等比数列的各项均为正数,且,则()A.12 B.10C.9 D.8.岳阳高铁站进站口有3个闸机检票通道口,高考完后某班3个同学从该进站口检票进站到外地旅游,如果同一个人进的闸机检票通道口选法不同,或几个人进同一个闸机检票通道口但次序不同,都视为不同的进站方式,那么这3个同学的不同进站方式有()种A.24 B.36 C.42 D.609.若集合,,则等于()A. B. C. D.10.已知函数在区间上恰有一个最大值点和一个最小值点,则实数的取值范围是()A. B. C. D.11.已知,函数,若在上是单调减函数,则的取值范围是()A. B. C. D.12.若函数图象上存在两个点,关于原点对称,则对称点为函数的“孪生点对”,且点对与可看作同一个“孪生点对”.若函数恰好有两个“孪生点对”,则实数的值为()A.0 B.2 C.4 D.6二、填空题:本题共4小题,每小题5分,共20分。13.已知的外接圆半径为1,,点在线段上,且,则面积的最大值为______.14.若=,则x的值为_______.15.双曲线上一点到点的距离为9,则点到点的距离______.16.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有;(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在的展开式中,第6项为常数项.(1)求;(2)求展开式中所有的有理项.18.(12分)已知函数.(1)讨论函数的单调性;(2)当时,求的取值范围.19.(12分)已知数列的前项和为,且.(1)求数列的通项公式;(2)求数列的前项和.20.(12分)已知,R,矩阵的两个特征向量,.(1)求矩阵的逆矩阵;(2)若,求.21.(12分)在上海高考改革方案中,要求每位考生必须在物理、化学、生物、政治、历史、地理六门学科中选择三门参加等级考试,受各因素影响,小李同学决定选择物理,并在生物和地理中至少选择一门.(1)小李同学共有多少种不同的选科方案?(2)若小吴同学已确定选择生物和地理,求小吴同学与小李同学选科方案相同的概率.22.(10分)双曲线的虚轴长为,两条渐近线方程为.(1)求双曲线的方程;(2)双曲线上有两个点,直线和的斜率之积为,判别是否为定值,;(3)经过点的直线且与双曲线有两个交点,直线的倾斜角是,是否存在直线(其中)使得恒成立?(其中分别是点到的距离)若存在,求出的值,若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】,所以,选A.2、C【解题分析】
化简函数,研究它的性质从而得出正确答案.【题目详解】为偶函数,故①正确.当时,,它在区间单调递减,故②错误.当时,,它有两个零点:;当时,,它有一个零点:,故在有个零点:,故③错误.当时,;当时,,又为偶函数,的最大值为,故④正确.综上所述,①④正确,故选C.【题目点拨】画出函数的图象,由图象可得①④正确,故选C.3、C【解题分析】
空间的一组基底,必须是不共面的三个向量,利用向量共面的充要条件可证明、、三个选项中的向量均为共面向量,利用反证法可证明中的向量不共面【题目详解】解:,,,共面,不能构成基底,排除;,,,共面,不能构成基底,排除;,,,共面,不能构成基底,排除;若、,共面,则,则、、为共面向量,此与为空间的一组基底矛盾,故、,可构成空间向量的一组基底.故选:.【题目点拨】本题主要考查了空间向量基本定理,向量共面的充要条件等基础知识,判断向量是否共面是解决本题的关键,属于中档题.4、C【解题分析】由,得,则,故选C.5、A【解题分析】
由题构建图像,由,想到取PC中点构建平面ABD,易证得平面ABD,所以PA与平面所成角即为,利用正弦函数定义,得答案.【题目详解】如图所示,取PC中点为D连接AD,BD,因为过AB的平面将三棱锥P-ABC分为体积相等的两部分,所以即为平面ABD;又因为,所以,又,所以,且,所以平面ABD,所以PA与平面所成角即为,因为,所以,所以.故选:A【题目点拨】本题考查立体几何中求线面角,应优先作图,找到或证明到线面垂直,即可表示线面角,属于较难题.6、B【解题分析】
根据题意得出样本中男生和女生所占的比例分别为611和511,于是得出样本中男生与女生人数之差为611【题目详解】依题意可得(611-511)×n【题目点拨】本题考考查分层抽样的相关计算,解题时要利用分层抽样的特点列式求解,考查计算能力,属于基础题。7、C【解题分析】
先利用等比中项的性质计算出的值,再利用对数的运算性质以及等比中项的性质得出结果.【题目详解】由等比中项的性质可得,等比数列的各项均为正数,则,由对数的运算性质得,故选C.【题目点拨】本题考查等比中项和对数运算性质的应用,解题时充分利用这些运算性质,可简化计算,考查计算能力,属于中等题.8、D【解题分析】分析:三名同学可以选择1个或2个或3个不同的检票通道口进站,三种情况分别计算进站方式即可得到总的进站方式.详解:若三名同学从3个不同的检票通道口进站,则有种;若三名同学从2个不同的检票通道口进站,则有种;若三名同学从1个不同的检票通道口进站,则有种;综上,这3个同学的不同进站方式有种,选D.点睛:本题考查排列问题,属于中档题,解题注意合理分类讨论,而且还要注意从同一个进站口进入的学生的不同次序.9、D【解题分析】分析:先解绝对值不等式得集合A,再解分式不等式得集合B,最后根据交集定义求结果.详解:因为,所以因为,所以或x>3,因此,选D.点睛:集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.10、B【解题分析】
首先利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质的应用求出结果.【题目详解】由题意,函数,令,所以,在区间上恰有一个最大值点和最小值点,则函数恰有一个最大值点和一个最小值点在区间,则,解答,即,故选B.【题目点拨】本题主要考查了三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.11、C【解题分析】
根据函数的解析式,可求导函数,根据导函数与单调性的关系,可以得到;分离参数,根据所得函数的特征求出的取值范围.【题目详解】因为所以因为在上是单调减函数所以即所以当时,恒成立当时,令,可知双刀函数,在上为增函数,所以即所以选C【题目点拨】导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值)..12、A【解题分析】分析:由题可知当时,与恰有两个交点.根据函数的导数确定的图象,即可求得实数的值.详解:由题可知,当时,与恰有两个交点.函数求导()易得时取得极小值;时取得极大值另可知,所得函数图象如图所示.当,即时与恰有两个交点.当时,恰好有两个“孪生点对”,故选A.点睛:本题主要考查新定义,通过审题,读懂题意,选择解题方向,将问题转化为当时,与恰有两个交点是解题关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由所以可知为直径,设,求导得到面积的最大值.【题目详解】由所以可知为直径,所以,设,则,在中,有,,所以的面积,.方法一:(导数法),所以当时,,当时,,所以在上单调递增,在上单调递减,所以当时,的面积的最大值为.方法二:(均值不等式),因为.当且仅当,即时等号成立,即.【题目点拨】本题考查了面积的最大值问题,引入参数是解题的关键.14、4或9.【解题分析】分析:先根据组合数性质得,解方程得结果详解:因为=,所以因此点睛:组合数性质:15、或【解题分析】
先根据双曲线方程求出焦点坐标,再结合双曲线的定义可得到,进而可求出的值,得到答案.【题目详解】双曲线,,,,和为双曲线的两个焦点,点在双曲线上,,解或,,或,故答案为:或.【题目点拨】本题主要考查的是双曲线的定义,属于基础题.求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据求解,注意对所求结果进行必要的验证,负数应该舍去,且所求距离应该不小于.16、24【解题分析】甲、乙排在一起,用捆绑法,先排甲、乙、戊,有种排法,丙、丁不排在一起,用插空法,有种排法,所以共有种.考点:排列组合公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2),,【解题分析】本试题主要是考查了二项式定理中常数项和有理项的问题的运用,以及二项式定理中通项公式的灵活运用.(1)利用展开式中,则说明x的次数为零,得到n的值,(2)利用x的幂指数为整数,可以知道其有理项问题.(1),由=0得;(2),得到18、(1)见解析;(2)【解题分析】
(1)对求导并因式分解,对分成四种情况,讨论函数的单调性.(2)先将函数解析式转化为,当时,,符合题意.当时,由分离常数得到,构造函数,利用导数求得的值域,由此求得的取值范围.【题目详解】解:(1),①当时,,令得,可得函数的增区间为,减区间为.②当时,由,当时,;当时,,故,此时函数在上单调递增,增区间为,没有减区间.③当时,令得或,此时函数的增区间为,,减区间为.④当时,令得:或,此时函数的增区间为,,减区间为.(2)由①当时,,符合题意;②当时,若,有,得令,有,故函数为增函数,,故,由上知实数的取值范围为.【题目点拨】本小题主要考查利用导数研究函数的单调性,考查利用导数研究不等式恒成立问题,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,综合性很强,属于难题.19、(1);(2).【解题分析】
直接利用递推关系式,构造等比数列,求出数列的通项公式;
利用的结论,进一步利用分组法求出数列的和.【题目详解】(1)因为,所以,所以,即,所以,又所以是以2为首项,2为公比的等比数列.所以,即.(2)因为,所以.【题目点拨】本题考查了利用递推关系式求出数列的通项公式,等比数列的前n项和公式及分组求和的应用,主要考查学生的运算能力和转化能力,属于中档题.20、(1)(2)【解题分析】
(1)由矩阵的特征向量求法,解方程可得,再由矩阵的逆矩阵可得所求;(2)求得,再由矩阵的多次变换,可得所求.【题目详解】解:(1)设矩阵的特征向量对应的特征值为,特征向量对应的特征值为,则,则.(2)因,所以.【题目点拨】本题考查矩阵的特征值和特征向量,考查矩阵的逆矩阵,以及矩阵的变换,考查运算求解能力,属于中档题.21、(1)小李同学共有7种不同的选科方案(2)【解题分析】
(1)运用排除法求解;(2)列出两位同学相同的选科方案,求比值可求解.【题目详解】解:(1)在化学、生物、政治、历史、地理任意选两门的方法数为,在化学、政治、历史任意选两门的方法数为,,因此,小李同学共有7种不同的选科方案;(2)小吴同学有4种不同的选科方案,小吴同学与小李同学两人选科的方案共有种,其中两人选科相同的方案只有1种,因此,小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全生产管理制度文本普通货运十七项
- 汽车金融公司风险防范与应对措施考核试卷
- 火工品生产过程中的质量控制与保障考核试卷
- 灯具销售中的市场预测与趋势分析考核试卷
- 抗磨损能力研究考核试卷
- 生物遗传工程与生物技术考核试卷
- 电池管理系统与充电技术考核试卷
- 2025届四川省德阳市第五中学高三下学期第三次(线上)周考数学试题
- 2025医疗设备采购合同协议范本格式
- 2025版锅炉设备购销安装合同(草案)
- 1-226海德汉530系统编程和操作说明书(五轴-特详细)
- 高中文言文教学:从“言”到“文”的理性跨越
- 河北省2024-2025学年高三省级联测考试+化学试卷答案
- 青岛版小学数学四年级下册认识多边形思维导图知识讲解
- 信息技术必修一《数据与计算》第四章第一节《体验计算机视觉应用》教案
- 【年产五万吨乙醛工艺设计7100字(论文)】
- 事业单位离岗创业规定2024年
- 压力容器制造程序文件及表格(符合TSG 07-2019特种设备质量保证管理体系)
- 2024年四川省南充市中考英语试卷真题(含官方答案及解析)
- 圆周角与圆心角的关系 说课 课件2023-2024学年北师大版九年级数学下册
- 举一反三四年级奥数-第19周-解决问题(二)
评论
0/150
提交评论