




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省丽水四校联考数学高二第二学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙、丙、丁、戊5名同学报名参加社区服务活动,社区服务活动共有关爱老人、环境监测、教育咨询、交通宣传、文娱活动五个项目,每人限报其中一项,记事件为“5名同学所报项目各不相同”,事件为“只有甲同学一人报关爱老人项目”,则()A. B. C. D.2.复数在复平面内对应的点在A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(2-x)(2x+1)6的展开式中x4的系数为()A. B.320 C.480 D.6404.在中,,则()A. B. C. D.5.如图,是椭圆与双曲线的公共焦点,分别是在第二、四象限的公共点,若四边形为矩形,则的离心率是()A. B. C. D.6.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.设复数z满足,z在复平面内对应的点为(x,y),则A. B. C. D.8.已知集合,,若,则实数的取值范围是()A. B. C. D.9.已知函数有三个不同的零点(其中),则的值为()A. B. C. D.110.已知随机变量服从二项分布,若,,则,分别等于()A., B., C., D.,11.已知关于的方程的两根之和等于两根之积的一半,则一定是()A.直角三角形 B.等腰三角形 C.钝角三角形 D.等边三角形12.在中,角,,所对的边分别为,,,且,,,,则()A.2 B. C. D.4二、填空题:本题共4小题,每小题5分,共20分。13.小明玩填数游戏:将1,2,3,4四个数填到的表格中,要求每一行每一列都无重复数字。小明刚填了一格就走开了(如右图所示),剩下的表格由爸爸完成,则爸爸共有_______种不同的填法.(结果用数字作答)114.的展开式中的有理项共有__________项.15.点P是棱长为1的正方体ABCD﹣A1B1C1D1的底面A1B1C1D1上一点,则的取值范围是__.16.已知角的终边与单位圆交点的横坐标是,则的值是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设等比数列的前项和为,已知,且成等差数列,.(1)求数列的通项公式;(2),求数列的前和.18.(12分)中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15∽65岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:年龄支持“延迟退休”的人数155152817(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;45岁以下45岁以上总计支持不支持总计(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.参考数据:0.1000.0500.0100.0012.7063.8416.63510.828,其中19.(12分)(1)已知矩阵的一个特征值为,其对应的特征向量,求矩阵及它的另一个特征值.(2)在极坐标系中,设P为曲线C:上任意一点,求点P到直线l:的最小距离.20.(12分)如图,有一块半椭圆形钢板,其长半轴长为,短半轴长为,计划将此钢板切割成等腰梯形的形状,下底是半椭圆的短轴,上底的端点在椭圆上,梯形面积为.(1)当,时,求梯形的周长(精确到);(2)记,求面积以为自变量的函数解析式,并写出其定义域.21.(12分)已知函数.(1)解不等式;(2)若的最小值为,正实数,满足,求的最小值.22.(10分)将下列参数方程化为普通方程:(1)(为参数);(2)(为参数).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
由条件概率与独立事件可得:,P(AB)=,所以P(A|B)=,得解.【题目详解】由已知有事件概率为:,事件概率为:P(AB)=,所以P(A|B)=,故选:A.【题目点拨】本题考查条件概率的计算,条件概率的两种求法:(1)定义法:先求P(A)和P(AB),再由P(B|A)=即可;(2)基本事件法:借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件AB所包含的基本事件数n(AB),得P(B|A)=,本题属于基础题.2、B【解题分析】因,故复数对应的点在第二象限,应选答案B.3、B【解题分析】,展开通项,所以时,;时,,所以的系数为,故选B.点睛:本题考查二项式定理.本题中,首先将式子展开得,再利用二项式的展开通项分别求得对应的系数,则得到问题所要求的的系数.4、B【解题分析】
先根据求得,进而求得,根据余弦定理求得以及,由此求得.【题目详解】由于,所以且为锐角,所以.由余弦定理得.故.所以.故选B.【题目点拨】本小题主要考查同角三角函数的基本关系式,考查余弦定理解三角形,考查向量数量积的运算,属于中档题.5、D【解题分析】
试题分析:由椭圆与双曲线的定义可知,|AF2|+|AF1|=4,|AF2|-|AF1|=2a(其中2a为双曲线的长轴长),∴|AF2|=a+2,|AF1|=2-a,又四边形AF1BF2是矩形,∴|AF1|2+|AF2|2=|F1F2|2=(2)2,∴a=,∴e==.考点:椭圆的几何性质.6、C【解题分析】
在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或.【题目详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,,则与相交或平行,故A错误;在B中,若,,则或,故B错误;在C中,若,,则由线面垂直的判定定理得,故C正确;在D中,若,,则与平行或,故D错误.故选C.【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.7、C【解题分析】
本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x,y)和点(0,1)之间的距离为1,可选正确答案C.【题目详解】则.故选C.【题目点拨】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.8、A【解题分析】由已知得,由,则,又,所以.故选A.9、D【解题分析】
令y=,从而求导y′=以确定函数的单调性及取值范围,再令=t,从而化为t2+(a﹣1)t+1﹣a=0有两个不同的根,从而可得a<﹣3或a>1,讨论求解即可.【题目详解】令y=,则y′=,故当x∈(0,e)时,y′>0,y=是增函数,当x∈(e,+∞)时,y′>0,y=是减函数;且=﹣∞,=,=0;令=t,则可化为t2+(a﹣1)t+1﹣a=0,故结合题意可知,t2+(a﹣1)t+1﹣a=0有两个不同的根,故△=(a﹣1)2﹣4(1﹣a)>0,故a<﹣3或a>1,不妨设方程的两个根分别为t1,t2,①若a<﹣3,t1+t2=1﹣a>4,与t1≤且t2≤相矛盾,故不成立;②若a>1,则方程的两个根t1,t2一正一负;不妨设t1<0<t2,结合y=的性质可得,=t1,=t2,=t2,故(1﹣)2(1﹣)(1﹣)=(1﹣t1)2(1﹣t2)(1﹣t2)=(1﹣(t1+t2)+t1t2)2又∵t1t2=1﹣a,t1+t2=1﹣a,∴(1﹣)2(1﹣)(1﹣)=1;故选:D.【题目点拨】本题考查了导数的综合应用及转化思想的应用,考查了函数的零点个数问题,考查了分类讨论思想的应用.10、C【解题分析】分析:直接利用二项分布的期望与方差列出方程求解即可.详解:随机变量服从二项分布,若,,
可得故选:C.点睛:本题考查离散型随机变量的分布列的期望以及方差的求法,考查计算能力.11、B【解题分析】分析:根据题意利用韦达定理列出关系式,利用两角和与差的余弦函数公式化简得到A=B,即可确定出三角形形状.详解:设已知方程的两根分别为x1,x2,根据韦达定理得:x1+x2=cosAcosB,x1x2=2sin2=1﹣cosC,∵x1+x2=x1x2,∴2cosAcosB=1﹣cosC,∵A+B+C=π,∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB,∴cosAcosB+sinAsinB=1,即cos(A﹣B)=1,∴A﹣B=0,即A=B,∴△ABC为等腰三角形.故选B.点睛:此题考查了三角形的形状判断,涉及的知识有:根与系数的关系,两角和与差的余弦函数公式,以及二倍角的余弦函数公式,熟练掌握公式是解本题的关键.12、C【解题分析】
先利用正弦定理解出c,再利用的余弦定理解出b【题目详解】所以【题目点拨】本题考查正余弦定理的简单应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、144【解题分析】分析:依据题意已经放好一个数字,为了满足要求进行列举出结果详解:第一行将数字填入表格有种可能,然后将数字填入表格有种可能;那么第二行每个数字分别有、、、种可能;根据题意每一行每一列都无重复数字,所以第三行只有种可能,第四行每个数字都只有一种情况,所以一共有点睛:本题考查了排列组合,在解答题目时按照题意采取了列举法,分别考虑每一行的情况,然后再进行排列,在解题时注意是否存在重复的情况。14、3【解题分析】,,因为有理项,所以,共三项。填3.15、[﹣,0]【解题分析】
建立空间直角坐标系,设出点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1,计算•x2﹣x,利用二次函数的性质求得它的值域即可.【题目详解】解:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,建立空间直角坐标系,如图所示;则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),由题意可得0≤x≤1,0≤y≤1,z=1;∴(1﹣x,﹣y,﹣1),(﹣x,1﹣y,0),∴•x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y,由二次函数的性质可得,当x=y时,•取得最小值为;当x=0或1,且y=0或1时,•取得最大值为0,则•的取值范围是[,0].故答案为:[,0].【题目点拨】本题主要考查了向量在几何中的应用与向量的数量积运算问题,是综合性题目.16、【解题分析】试题分析:由题意得.考点:三角函数的定义;同角三角函数的基本关系式;诱导公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)首先根据题意得到,化简得到,求出,再代入即可.(2)首先化简得到,再利用裂项求和计算即可.【题目详解】(1)由题知:,即化简得:,,所以..(2)..【题目点拨】本题第一问考查等差、等比数列的综合,第二问考查裂项求和,属于中档题.18、(1)能(2)①②见解析【解题分析】分析:(1)由统计数据填写列联表,计算观测值,对照临界值得出结论;
(2)①求抽到1人是45岁以下的概率,再求抽到1人是45岁以上的概率,
②根据题意知的可能取值,计算对应的概率值,写出随机变量的分布列,计算数学期望值.详解:(1)由频率分布直方图知45岁以下与45岁以上各50人,故填充列联表如下:45岁以下45岁以上总计支持354580不支持15520总计5050100因为的观测值,所以在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异.(2)①抽到1人是45岁以下的概率为,抽到1人是45岁以下且另一人是45岁以上的概率为,故所求概率.②从不支持“延迟退休”的人中抽取8人,则45岁以下的应抽6人,45岁以上的应抽2人.所以的可能取值为0,1,2.,,.故随机变量的分布列为:012所以.点睛:本题考查了离散型随机变量的分布列与数学期望的计算问题,也考查了古典概型的概率计算问题,是中档题.19、(1);;(2).【解题分析】
(1)由矩阵运算,代入可求得或,即求得另一个特征值。(2)由直角坐标与极坐标互换公式,实现直角坐标与极坐标的相互转化。【题目详解】(1)由得:,,矩阵的特征多项式为,令,得,解得或所以矩阵的另一个特征值为(2)以极点为原点,极轴为轴建立平面直角坐标系.因为,所以,将其化为普通方程,得将曲线:化为普通方程,得.所以圆心到直线的距离所以到直线的最小距离为【题目点拨】直角坐标与极坐标互换公式,利用这个公式可以实现直角坐标与极坐标的相互转化。20、(1)周长是;(2),定义域.【解题分析】分析:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新疆机电职业技术学院《创业管理》2023-2024学年第二学期期末试卷
- 兰州职业技术学院《道路景观设计》2023-2024学年第一学期期末试卷
- 昆明冶金高等专科学校《装饰图案基础》2023-2024学年第二学期期末试卷
- 日照航海工程职业学院《首饰设计与制作》2023-2024学年第二学期期末试卷
- 西藏民族大学《医学免疫学研究进展》2023-2024学年第二学期期末试卷
- 吉林电子信息职业技术学院《软件设计开发综合实训》2023-2024学年第二学期期末试卷
- 铜仁职业技术学院《生物质废弃物资源化利用》2023-2024学年第二学期期末试卷
- 上海杉达学院《细胞及分子生物学实验》2023-2024学年第二学期期末试卷
- 江海职业技术学院《天然药物化学》2023-2024学年第一学期期末试卷
- 延安职业技术学院《高频电子电路》2023-2024学年第二学期期末试卷
- GB/T 34936-2017光伏发电站汇流箱技术要求
- 三年级《中国古代寓言故事》知识考试题库(含答案)
- 摩擦学发展前沿课件
- 吊车牵引放线跨越公路和停电10千伏线路方案说明
- (通用版)医院收费员考试试题及答案
- 锤击预应力管桩文明施工与环境保护
- 质量管理体系七项原则
- 装饰装修工程中的危险源辨识与风险评价表参考模板范本
- 班主任经验交流一等奖课件
- 国航特殊餐食代码表
- 中国肉牛产业链分析报告
评论
0/150
提交评论