2024届云南省丽江县第三中学数学高二第二学期期末检测试题含解析_第1页
2024届云南省丽江县第三中学数学高二第二学期期末检测试题含解析_第2页
2024届云南省丽江县第三中学数学高二第二学期期末检测试题含解析_第3页
2024届云南省丽江县第三中学数学高二第二学期期末检测试题含解析_第4页
2024届云南省丽江县第三中学数学高二第二学期期末检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省丽江县第三中学数学高二第二学期期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数满足:,且的实部为2,则A.3 B. C. D.2.已知函数在处取得极值,对任意恒成立,则A. B. C. D.3.下列说法正确的是()A.命题“若,则”的否命题为:“若,则”B.已知是R上的可导函数,则“”是“x0是函数的极值点”的必要不充分条件C.命题“存在,使得”的否定是:“对任意,均有”D.命题“角α的终边在第一象限角,则α是锐角”的逆否命题为真命题4.将两枚骰子各掷一次,设事件{两个点数都不相同},{至少出现一个3点},则()A. B. C. D.5.下列函数中与函数相同的是()A. B. C. D.6.已知二项式,且,则()A. B. C. D.7.观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102,根据上述规律,13+23+33+43+53+63=()A.192 B.202 C.212 D.2228.抛物线的焦点到双曲线的渐近线的距离为()A. B. C.1 D.9.设随机变量X的分布列如下:则方差D(X)=().A. B. C. D.10.用秦九韶算法求次多项式,当时,求需要算乘方、乘法、加法的次数分别为()A. B. C. D.11.若非零向量,满足,向量与垂直,则与的夹角为()A. B. C. D.12.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是()A.乙B.甲C.丁D.丙二、填空题:本题共4小题,每小题5分,共20分。13.若二项式的展开式中的系数是84,则实数__________.14.在中,内角的对边分别为,已知,,则的取值范围为______.15.已知双曲线上的动点到点和的距离分别为和,,且,则双曲线的方程为_______.16.组合恒等式,可以利用“算两次”的方法来证明:分别求和的展开式中的系数.前者的展开式中的系数为;后者的展开式中的系数为.因为,则两个展开式中的系数也相等,即.请用“算两次”的方法化简下列式子:______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆C的圆心在x轴上,且经过两点,.(1)求圆C的方程;(2)若点P在圆C上,求点P到直线的距离的最小值.18.(12分)足球是世界普及率最高的运动,我国大力发展校园足球.为了解本地区足球特色学校的发展状况,社会调查小组得到如下统计数据:年份x20142015201620172018足球特色学校y(百个)0.300.601.001.401.70(1)根据上表数据,计算y与x的相关系数r,并说明y与x的线性相关性强弱.(已知:,则认为y与x线性相关性很强;,则认为y与x线性相关性一般;,则认为y与x线性相关性较):(2)求y关于x的线性回归方程,并预测A地区2020年足球特色学校的个数(精确到个).参考公式和数据:,,.19.(12分)已知向量,函数.(1)求函数的最小正周期及单调递增区间;(2)在中,三内角的对边分别为,已知函数的图像经过点,成等差数列,且,求a的值.20.(12分)《流浪地球》是由刘慈欣的科幻小说改编的电影,在2019年春节档上影,该片上影标志着中国电影科幻元年的到来;为了振救地球,延续百代子孙生存的希望,无数的人前仆后继,奋不顾身的精神激荡人心,催人奋进.某网络调查机构调查了大量观众的评分,得到如下统计表:评分12345678910频率0.030.020.020.030.040.050.080.150.210.36(1)求观众评分的平均数?(2)视频率为概率,若在评分大于等于8分的观众中随机地抽取1人,他的评分恰好是10分的概率是多少?(3)视频率为概率,在评分大于等于8分的观众中随机地抽取4人,用表示评分为10分的人数,求的分布列及数学期望.21.(12分)已知中心为坐标原点、焦点在坐标轴上的椭圆经过点和点,直线:与椭圆交于不同的,两点.(1)求椭圆的标准方程;(2)若椭圆上存在点,使得四边形恰好为平行四边形,求直线与坐标轴围成的三角形面积的最小值以及此时,的值.22.(10分)有甲、乙两个游戏项目,要参与游戏,均需每次先付费元(不返还),游戏甲有种结果:可能获得元,可能获得元,可能获得元,这三种情况的概率分别为,,;游戏乙有种结果:可能获得元,可能获得元,这两种情况的概率均为.(1)某人花元参与游戏甲两次,用表示该人参加游戏甲的收益(收益=参与游戏获得钱数-付费钱数),求的概率分布及期望;(2)用表示某人参加次游戏乙的收益,为任意正整数,求证:的期望为.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:根据题意设根据题意得到,从而根据复数的模的概念得到结果.详解:设根据题意得到则=.故答案为B.点睛:本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.2、C【解题分析】分析:根据函数在处取得极值解得,由于,对任意恒成立,则,确定的值。再由三次函数的二阶导数的几何意义,确定的对称中心,最后求解。详解:已知函数在处取得极值,故,解得。对任意恒成立,则,对任意恒成立,则所以.所以函数表达式为,,,令,解得,由此,由三次函数的性质,为三次函数的拐点,即为三次函数的对称中心,,所以,.故选C。点睛:在某点处的极值等价于在某点处的一阶导函数的根,二阶导函数的零点的几何意义为函数的拐点,三次函数的拐点的几何意义为三次函数的对称中心。二阶导函数的零点为拐点,但不是所有的拐点都为对称中心。3、B【解题分析】试题分析:对于A,命题“若,则”的否命题为:“若,则”,不满足否命题的定义,所以A不正确;对于B,已知是R上的可导函数,则“”函数不一定有极值,“是函数的极值点”一定有导函数为,所以已知是上的可导函数,则“”是“是函数的极值点”的必要不充分条件,正确;对于C,命题“存在,使得”的否定是:“对任意,均有”,不满足命题的否定形式,所以不正确;对于D,命题“角的终边在第一象限角,则是锐角”是错误命题,则逆否命题为假命题,所以D不正确;故选B.考点:命题的真假判断与应用.4、A【解题分析】分析:利用条件概率求.详解:由题得所以故答案为:A.点睛:(1)本题主要考查条件概率,意在考查学生对该知识的掌握水平和分析推理计算能力.(2)条件概率的公式:,=.5、B【解题分析】

判断各个选项中的函数和函数是否具有相同的定义域、值域、对应关系,从而得出结论.【题目详解】由于函数yt,和函数具有相同的定义域、值域、对应关系,故是同一个函数,故B满足条件.由于函数y和函数的定义域不同,故不是同一个函数,故排除D.由于函数,y|x|和函数的值域不同,故不是同一个函数,故排除A,C.故选:A.【题目点拨】本题主要考查函数的三要素,只有两个函数的定义域、对应关系、值域都相同时,这两个函数才是同一个函数,属于基础题.6、D【解题分析】

把二项式化为,求得其展开式的通项为,求得,再令,求得,进而即可求解.【题目详解】由题意,二项式展开式的通项为,令,可得,即,解得,所以二项式为,则,令,即,则,所以.【题目点拨】本题主要考查了二项式定理的应用,其中解答中把二项式,利用二项式通项,合理赋值求解是解答的关键,着重考查了推理与运算能力,属于基础题.7、C【解题分析】∵所给等式左边的底数依次分别为1,2;1,2,3;1,2,3,4;

右边的底数依次分别为3,6,10,(注意:这里,),

∴由底数内在规律可知:第五个等式左边的底数为1,2,3,4,5,6,

右边的底数为,又左边为立方和,右边为平方的形式,

故有,故选C.点睛:本题考查了,所谓归纳推理,就是从个别性知识推出一般性结论的推理.它与演绎推理的思维进程不同.归纳推理的思维进程是从个别到一般,而演绎推理的思维进程不是从个别到一般,是一个必然地得出的思维进程.解答此类的方法是从特殊的前几个式子进行分析找出规律.观察前几个式子的变化规律,发现每一个等式左边为立方和,右边为平方的形式,且左边的底数在增加,右边的底数也在增加.从中找规律性即可.8、B【解题分析】抛物线的焦点为:,双曲线的渐近线为:.点到渐近线的距离为:.故选B.9、B【解题分析】分析:先求出的值,然后求出,利用公式求出详解:故选点睛:本题考查了随机变量的分布列的相关计算,解答本题的关键是熟练掌握随机变量的期望与方差的计算方法10、D【解题分析】求多项式的值时,首先计算最内层括号内一次多项式的值,即然后由内向外逐层计算一次多项式的值,即..….这样,求n次多项式f(x)的值就转化为求n个一次多项式的值.∴对于一个n次多项式,至多做n次乘法和n次加法故选D.11、B【解题分析】∵,且与垂直,∴,即,∴,∴,∴与的夹角为.故选.12、A【解题分析】

由题意,这个问题的关键是四人中有两人说真话,另外两人说了假话,通过这一突破口,进行分析,推理即可得到结论.【题目详解】在甲、乙、丙、丁四人的供词中,可以得出乙、丁两人的观点是一致的,因此乙丁两人的供词应该是同真同假(即都是真话或都是假话,不会出现一真一假的情况);假设乙、丁两人所得都是真话,那么甲、丙两人说的是假话,由乙说真话可推出丙是犯罪的结论;由甲说假话,推出乙、丙、丁三人不是犯罪的结论;显然这两人是相互矛盾的;所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙的供词可以断定乙是犯罪的,乙、丙、丁中有一人是犯罪的,由丁说假话,丙说真话推出乙是犯罪的,综上可得乙是犯罪的,故选A.【题目点拨】本题主要考查了推理问题的实际应用,其中解答中结合题意,进行分析,找出解决问题的突破口,然后进行推理是解答的关键,着重考查了推理与论证能力.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】

试题分析:由二项式定理可得:,因为的系数是,所以即,即,所以.考点:二项式定理.14、【解题分析】

将已知等式化边为角,结合两角和的正弦公式化简可得,已知,由余弦定理和基本不等式,求出的最大值,结合,即可求解.【题目详解】由正弦定理及,得.因为,所以.化简可得.因为,所以.因为,所以.由已知及余弦定理,得,即,因为,,所以,得,所以,当且仅当时,取等号.又因三角形任意两边之和大于第三边,所以,所以.故的取值范围为.故答案为:【题目点拨】本题考查正弦定理、余弦定理、三角恒等变换解三角形,利用基本不等式求最值,属于中档题.15、【解题分析】

在△中,利用余弦定理和双曲线的定义得到,从而求得,,最后求出双曲线的方程即可.【题目详解】在△中,由余弦定理得:,,,则双曲线方程为.故答案为:.【题目点拨】本小题考查双曲线的定义、余弦定理、三角恒等变换等知识的交会,考查函数与方程思想,考查运算求解能力,属于中档题.16、【解题分析】

结合所给信息,构造,利用系数相等可求.【题目详解】因为,则两个展开式中的系数也相等,在中的系数为,而在中的系数为,所以可得.【题目点拨】本题主要考查二项式定理的应用,精准理解题目所给信息是求解关键,侧重考查数学抽象和数学建模的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)设圆心在轴上的方程是,代入两点求圆的方程;(2)利用数形结合可得最短距离是圆心到直线的距离-半径.【题目详解】解:(1)由于圆C的圆心在x轴上,故可设圆心为,半径为,又过点,,故解得故圆C的方程.(2)由于圆C的圆心为,半径为,圆心到直线的距离为,又点P在圆C上,故点P到直线的距离的最小值为.【题目点拨】本题考查了圆的方程以及圆有关的最值问题,属于简单题型,当直线和圆相离时,圆上的点到直线的最短距离是圆心到直线的距离-半径,最长的距离是圆心到直线的距离+半径.18、(1),y与x线性相关性很强(2),244【解题分析】

(1)根据题意计算出r,再比较即得解;(2)根据已知求出线性回归方程,再令x=2020即得解.【题目详解】(1)由题得所以,y与x线性相关性很强.(2),,关于的线性回归方程是.当时,,即该地区2020年足球特色学校有244个.【题目点拨】本题主要考查相关系数的应用,考查线性回归方程的求法和应用,意在考查学生对这些知识的理解掌握水平.19、(1),(2)【解题分析】

(1)利用向量的数量积和二倍角公式化简得,故可求其周期与单调性;(2)根据图像过得到,故可求得的大小,再根据数量积得到的乘积,最后结合余弦定理和构建关于的方程即可.【题目详解】(1),最小正周期:,由得,所以的单调递增区间为;(2)由可得:,所以.又因为成等差数列,所以而,.20、(1)8;(2);(3)分布列见解析,2.【解题分析】

(1)利用平均数的公式求解即可;(2)所求概率为评分恰好是10分的概率与评分大于等于8分的概率的比,即可求解;(3)由题知服从,进而去利用公式求解分布列及期望即可.【题目详解】(1)设观众评分的平均数为,则(2)设A表示事件“1位观众评分不小于8分”,B表示事件“1位观众评分是10分”(3)由题知服从,(,1,2,3,4)则的分布列为:01234P【题目点拨】本题考查平均数,考查二项分布的分布列与期望,考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论