![2024届高平市第一中学数学高二下期末学业质量监测试题含解析_第1页](http://file4.renrendoc.com/view11/M02/30/22/wKhkGWW7J46AMOdFAAKCVSY9Lb4733.jpg)
![2024届高平市第一中学数学高二下期末学业质量监测试题含解析_第2页](http://file4.renrendoc.com/view11/M02/30/22/wKhkGWW7J46AMOdFAAKCVSY9Lb47332.jpg)
![2024届高平市第一中学数学高二下期末学业质量监测试题含解析_第3页](http://file4.renrendoc.com/view11/M02/30/22/wKhkGWW7J46AMOdFAAKCVSY9Lb47333.jpg)
![2024届高平市第一中学数学高二下期末学业质量监测试题含解析_第4页](http://file4.renrendoc.com/view11/M02/30/22/wKhkGWW7J46AMOdFAAKCVSY9Lb47334.jpg)
![2024届高平市第一中学数学高二下期末学业质量监测试题含解析_第5页](http://file4.renrendoc.com/view11/M02/30/22/wKhkGWW7J46AMOdFAAKCVSY9Lb47335.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届高平市第一中学数学高二下期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线l在平面上,直线m平行于平面,并与直线l异面.动点P在平面上,且到直线l、m的距离相等.则点P的轨迹为().A.直线 B.椭圆 C.抛物线 D.双曲线2.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表:时间周一周二周三周四周五车流量(万辆)100102108114116浓度(微克)7880848890根据上表数据,用最小二乘法求出与的线性回归方程是()参考公式:,;参考数据:,;A. B. C. D.3.2019年,河北等8省公布了高考改革综合方案将采取“3+1+2”模式,即语文、数学、英语必考,然后考生先在物理、历史中选择1门,再在思想政治、地理、化学、生物中选择2门.一名同学随机选择3门功课,则该同学选到物理、地理两门功课的概率为()A. B. C. D.4.若a∈R,则“a=2”是“|a|=2”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分又不必要条件5.设函数的定义域A,函数的值域为B,则()A. B. C. D.6.某快递公司共有人,从周一到周日的七天中,每天安排一人送货,每人至少送货天,其不同的排法共有()种.A. B. C. D.7.函数的值域是A. B. C. D.8.古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有A.5种 B.10种C.20种 D.120种9.分形几何学是美籍法国数学家伯努瓦••曼德尔布罗特()在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路.下图按照的分形规律生长成一个树形图,则第13行的实心圆点的个数是()A.55个 B.89个 C.144个 D.233个10.设,,,则大小关系是()A. B.C. D.11.复数的共轭复数是()A. B. C. D.12.通过随机询问110名性别不同的大学生是否爱好体育,得到表:参照附表,得到的正确结论是附:由公式算得:附表:0.250.150.100.050.0250.0100.0051.3232.7022.7063.8415.0246.6357.879A.有以上的把握认为“爱好体育运动与性别有关”B.有以上的把握认为“爱好体育运动与性别无关”C.在犯错误的概率不超过的前提下,认为“爱好体育运动与性别有关”D.在犯错误的概率不超过的前提下,认为“爱好体育运动与性别无关”二、填空题:本题共4小题,每小题5分,共20分。13.若,则______.14.已知复数的共轭复数是,且,则的虚部是__________.15.如图,边长为的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒粒豆子,粒中有粒落在阴影区域,则阴影区域的面积约为__________.16.已知,且,则____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)随着生活水平的提高,越来越多的人参与了潜水这项活动.某潜水中心调查了100名男性与100女性下潜至距离水面5米时是否耳鸣,下图为其等高条形图:①绘出列联表;②根据列联表的独立性检验,能否在犯错误的概率不超过0.005的前提下认为耳鸣与性别有关系?附:,其中.0.0250.0100.0050.0015.0246.6357.87910.82818.(12分)甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.记甲击中目标的次数为,乙击中目标的次数为.(1)求的分布列;(2)求和的数学期望.19.(12分)某医药开发公司实验室有瓶溶液,其中瓶中有细菌,现需要把含有细菌的溶液检验出来,有如下两种方案:方案一:逐瓶检验,则需检验次;方案二:混合检验,将瓶溶液分别取样,混合在一起检验,若检验结果不含有细菌,则瓶溶液全部不含有细菌;若检验结果含有细菌,就要对这瓶溶液再逐瓶检验,此时检验次数总共为.(1)假设,采用方案一,求恰好检验3次就能确定哪两瓶溶液含有细菌的概率;(2)现对瓶溶液进行检验,已知每瓶溶液含有细菌的概率均为.若采用方案一.需检验的总次数为,若采用方案二.需检验的总次数为.(i)若与的期望相等.试求关于的函数解析式;(ii)若,且采用方案二总次数的期望小于采用方案一总次数的期望.求的最大值.参考数据:20.(12分)使用支付宝和微信支付已经成为广大消费者最主要的消费支付方式,某超市通过统计发现一周内超市每天的净利润(万元)与每天使用支付宝和微信支付的人数(千人)具有相关关系,并得到最近一周的7组数据如下表,并依此作为决策依据.周一周二周三周四周五周六周日131626222529307111522242734(Ⅰ)作出散点图,判断与哪一个适合作为每天净利润的回归方程类型?并求出回归方程(,,,精确到);(Ⅱ)超市为了刺激周一消费,拟在周一开展使用支付宝和微信支付随机抽奖活动,总奖金7万元.根据市场调查,抽奖活动能使使用支付宝和微信支付消费人数增加6千人,7千人,8千人,9千人的概率依次为,,,.试决策超市是否有必要开展抽奖活动?参考数据:,,,.参考公式:,,.21.(12分)如图四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在AD上,且PG=4,AG=13GD,BG⊥GC,GB=GC=2,E(1)求异面直线GE与PC所成的角的余弦值;(2)求点D到平面PBG的距离;(3)若F点是棱PC上一点,且DF⊥GC,求PFFC22.(10分))已知.(I)试猜想与的大小关系;(II)证明(I)中你的结论.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
设m在平面上的投影,与直线l交于点O.在平面上,以O为原点、直线l为y轴建立直角坐标系.则设的方程为.又设点P(x,y).则点P到直线l的距离,点P到直线的距离为.从而,点P到直线m的距离平方等于,其中,a为直线m到平面的距离.因此,点P的轨迹方程为,即为双曲线.2、B【解题分析】
利用最小二乘法做出线性回归直线的方程的系数,写出回归直线的方程,得到结果.【题目详解】由题意,b==0.72,a=84﹣0.72×108=6.24,∴=0.72x+6.24,故选:B.【题目点拨】本题主要考查线性回归方程,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.3、B【解题分析】
先计算出基本事件的总数,然后再求出该同学选到物理、地理两门功课的基本事件的个数,应用古典概型公式求出概率.【题目详解】解:由题意可知总共情况为,满足情况为,该同学选到物理、地理两门功课的概率为.故选B.【题目点拨】本题考查了古典概型公式,考查了数学运算能力.4、A【解题分析】
通过充分必要条件的定义判定即可.【题目详解】若a=2,显然|a|=2;若|a|=2,则a=±2,所以“a=2”是“|a|=2”的充分而不必要条件,故选A.【题目点拨】本题主要考查充分必要条件的相关判定,难度很小.5、B【解题分析】
根据二次根式的性质求出,再结合指数函数的性质求出,取交集即可.【题目详解】,,解得:,而单调递增,故值域:,,故选:.【题目点拨】本题考查定义域值域的求法,考查交集等基本知识,是基础题6、C【解题分析】分析:把天分成天组,然后人各选一组值班即可.详解:天分成天,天,天组,人各选一组值班,共有种,故选C.点睛:本题主要考查分组与分配问题问题,着重考查分步乘法计数原理,意在考查综合运用所学知识解决实际问题的能力,属于中档题.7、A【解题分析】分析:由于函数在上是减函数,且,利用单调性求得函数的值域详解:函数在上是减函数,且,当时,函数取得最小值为当时,函数取得最大值为故函数的值域为故选点睛:本题主要考查的是指数函数的单调性,求函数的值域,较为基础。8、B【解题分析】
根据题意,可看做五个位置排列五个数,把“金、木、土、水、火”用“1,2,3,4,5”代替.根据相克原理,1不与2,5相邻,2不与1,3相邻,依次类推,用分布计数原理写出符合条件的情况.【题目详解】把“金、木、土、水、火”用“1,2,3,4,5”代替.1不与2,5相邻,2不与1,3相邻,所以以“1”开头的排法只有“1,3,5,2,4”或“1,4,2,5,3”两种,同理以其他数开头的排法都是2种,所以共有种.选B.【题目点拨】本题考查分步计数原理的应用,考查抽象问题具体化,注重考查学生的思维能力,属于中档题.9、C【解题分析】分析:一一的列举出每行的实心圆点的个数,观察其规律,猜想:,得出结论即可,选择题我们可以不需要完整的理论证明.详解:行数12345678910111213球数01123581321345589144,由此猜想:,故选C.点睛:观察规律,把行数看成数列的项数,个数看作数列的项,尽可能的多推导前面有限项看出规律.10、A【解题分析】
根据三个数的特征,构造函数,求导,判断函数的单调性,利用函数的单调性可以判断出的大小关系.【题目详解】解:考查函数,则,在上单调递增,,,即,,故选A.【题目点拨】本题考查了通过构造函数,利用函数的单调性判断三个数大小问题,根据三个数的特征构造函数是解题的关键.11、A【解题分析】因为,所以复数的共轭复数是-1,选A.12、A【解题分析】
根据参照表和卡方数值判定,6.635<7.8<7.879,所以有以上的把握认为“爱好体育运动与性别有关”.【题目详解】因为6.635<7.8<7.879,所以有以上的把握认为“爱好体育运动与性别有关”,故选A.【题目点拨】本题主要考查独立性检验,根据数值所在区间能描述统计结论是求解关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
利用组合数的性质公式可以得到两个方程,解方程即可求出的值.【题目详解】因为,所以有或.当时,,方程无实根;当时,,综上所述:故答案为:【题目点拨】本题考查了组合数的性质公式,考查了解方程的能力,属于基础题.14、【解题分析】
设复数,代入等式得到答案.【题目详解】设复数故答案为【题目点拨】本题考查了复数的化简,共轭复数,复数的模,意在考查学生的计算能力和对复数知识的灵活运用.15、.【解题分析】分析:利用几何概型的概率公式进行求解.解析:正方形中随机撒一粒豆子,它落在阴影区域内的概率,∴.点睛:本题考查几何概型的应用,处理几何概型问题的关键在于合理选择几何模型(长度、角度、面积和体积等),一般原则是“一个变量考虑长度、两个变量考虑面积、三个变量考虑体积).16、【解题分析】
利用复数相等的条件和复数的模运算可以求得.【题目详解】由复数相等得:解得:故答案为【题目点拨】本题考查复数相等和复数的模,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、①答案见解析;②能在犯错误的概率不超过0.005的前提下认为耳鸣与性别有关系.【解题分析】分析:①.由题意结合等高条形图求得相应的人数,然后绘制列联表即可;②.结合①中的列联表计算的观测值:,则能在犯错误的概率不超过0.005的前提下认为耳鸣与性别有关系.详解:①由男女生各100人及等高条形图可知耳鸣的男生有人,耳鸣的女生有人,∴无耳鸣的男生有100-30=70人,无耳鸣的女生有100-50=50人,所以列联表如下:有耳鸣无耳鸣总计男3070100女5050100总计80120200②公式计算的观测值:,能在犯错误的概率不超过0.005的前提下认为耳鸣与性别有关系.点睛:独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.18、(1)见解析;(2),【解题分析】
(1)的可能值为,计算概率得到分布列.(2)分别计算数学期望得到答案.【题目详解】(1)的可能值为,;;,.故分布列为:(2),.【题目点拨】本题考查了分布列和数学期望,意在考查学生的计算能力和应用能力.19、(1)(2)(ⅰ)(ii)8【解题分析】
(1)对可能的情况分类:<1>前两次检验出一瓶含有细菌第三次也检验出一瓶含有细菌,<2>前三次都没有检验出来,最后就剩下两瓶含有细菌;(2)(i)根据,找到与的函数关系;(ii)根据得到关于的不等式式,构造函数解决问题.【题目详解】解:(1)记所求事件为,“第三次含有细菌且前2次中有一次含有细菌”为事件,“前三次均不含有细菌”为事件,则,且互斥,所以(2),的取值为,,所以,由得,所以;(ii),所以,所以,所以设,,当时,在上单调递增;当时,在上单调递减又,所以的最大值为8【题目点拨】本题考查离散型随机变量的均值以及随机事件的概率计算,难度较难.计算两个事件的和事件的概率,如果两个事件互斥,可将结果写成两个事件的概率之和;均值(或期望)的相关计算公式要熟记..20、(Ⅰ)见解析;(Ⅱ)超市有必要开展抽奖活动【解题分析】
(Ⅰ)在所给的坐标系中,画出散点图,可以发现选择作为每天净利润的回归方程类型比较合适,计算出,按照所给的公式可以求出,最后求出回归方程;(Ⅱ)根据离散型随机分布列的性质,可以求出值,然后可以求出数学期望,再利用(Ⅰ)求出的回归直线方程,可以预测出超市利润,除去总奖金,可以求出超市的净利润,最后判断出是否有必要开展抽奖活动.【题目详解】解:(Ⅰ)散点图如图所示根据散点图可判断,选择作为每天净利润的回归方程类型比较合适,关于的回归方程为(Ⅱ),活动开展后使用支付宝和微信支付的人数的期望为(千人)由(Ⅰ)得,当时,此时超市的净利润约为,故超市有必要开展抽奖活动【题目点拨】本题考查了求线性回归方程,并根据数学期望和回归直线方程对决策做出判断的问题,考查了应用数学知识解决现实生活中的问题的能力.21、(1)1010;(2)32;(3)【解题分析】
(1)以G点为原点,GB、GC、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大连商务职业学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2025年吉林电子信息职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2025年南京机电职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2025至2031年中国高温灭菌设备验证系统行业投资前景及策略咨询研究报告
- 2025至2031年中国电子狗行业投资前景及策略咨询研究报告
- 2025至2031年中国洗脚石行业投资前景及策略咨询研究报告
- 2025至2031年中国无尘室专用吸尘器行业投资前景及策略咨询研究报告
- 2025至2031年中国壁挂式超声波流量计行业投资前景及策略咨询研究报告
- 塑料产业链绿色发展-深度研究
- 暗物质引力效应-深度研究
- 北京市东城区2023-2024学年高二下学期期末英语试题 含解析
- 测绘学基础知识单选题100道及答案解析
- 2024年国家焊工职业技能理论考试题库(含答案)
- 特鲁索综合征
- 2024年山东省泰安市高考语文一模试卷
- TCL任职资格体系资料HR
- 《中国古代寓言》导读(课件)2023-2024学年统编版语文三年级下册
- 五年级上册计算题大全1000题带答案
- 工程建设行业标准内置保温现浇混凝土复合剪力墙技术规程
- 屋面细石混凝土保护层施工方案及方法
- 110kv各类型变压器的计算单
评论
0/150
提交评论