版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省衢州市高二数学第二学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.观察下面频率等高条形图,其中两个分类变量x,y之间关系最强的是()A. B.C. D.2.复数的虚部是()A.1 B.﹣i C.i D.﹣13.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,反设正确的是()A.假设三内角都不大于60° B.假设三内角都大于60°C.假设三内角至多有一个大于60° D.假设三内角至多有两个大于60°4.已知集合,,则集合()A. B. C. D.5.下面是利用数学归纳法证明不等式(,且的部分过程:“……,假设当时,++…+,故当时,有,因为,故++…+,……”,则横线处应该填()A.++…++<,B.++…+,C.2++…++,D.2++…+,6.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立做了15次和20次试验,并且利用线性回归方法,求得回归直线为l1和l2,已知在两人的试验中发现对变量x的观测数据的平均值恰好相等,都为s,对变量y的观测数据的平均值也恰好相等,都为t,那么下列说法正确的是()A.直线l1和直线l2有交点(s,t) B.直线l1和直线l2相交,但交点未必是点(s,t)C.直线l1和直线l2必定重合 D.直线l1和直线l2由于斜率相等,所以必定平行7.若函数至少有1个零点,则实数的取值范围是A. B. C. D.8.若f(x)=ax2+bx+c(c≠0)是偶函数,则g(x)=ax3+bx2+cx()A.是奇函数 B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数9.在的展开式中,含项的系数为()A.10 B.15 C.20 D.2510.已知等差数列前9项的和为27,,则A.100 B.99 C.98 D.9711.已知向量,,且,则等于().A. B. C. D.12.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(-1,1)的密度曲线)的点的个数的估计值为()附:若X∼N(μ,σ2),则PA.1193 B.1359 C.2718 D.3413二、填空题:本题共4小题,每小题5分,共20分。13.已知向量与,则的最小值是__________.14.设等差数列的前项和为,,,则取得最小值的值为________.15.为定义在上的奇函数,且,则_____.16.已知为虚数单位,则复数_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知a>0,a≠1,设p:函数y=loga(x+3)在(0,+∞)上单调递减,q:函数y=x2+(2a-3)x+1的图像与x轴交于不同的两点.如果p∨q真,p∧q假,求实数a的取值范围.18.(12分)某单位为了了解用电量(度)与气温之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表,由表中数据得线性回归方程,其中.现预测当气温为-时,用电量的度数约为多少?用电量(度)24343864气温181310-119.(12分)大型水果超市每天以元/千克的价格从水果基地购进若干水果,然后以元/千克的价格出售,若有剩余,则将剩余的水果以元/千克的价格退回水果基地,为了确定进货数量,该超市记录了水果最近天的日需求量(单位:千克),整理得下表:日需求量频数以天记录的各日需求量的频率代替各日需求量的概率.(1)求该超市水果日需求量(单位:千克)的分布列;(2)若该超市一天购进水果千克,记超市当天水果获得的利润为(单位:元),求的分布列及其数学期望.20.(12分)某城市理论预测2010年到2014年人口总数与年份的关系如下表所示年份2010+x(年)01234人口数y(十万)5781119(1)请根据上表提供的数据,求出y关于x的线性回归方程;(2)据此估计2015年该城市人口总数.21.(12分)已知.(Ⅰ)计算的值;(Ⅱ)若,求中含项的系数;(Ⅲ)证明:.22.(10分)已知函数,函数⑴当时,求函数的表达式;⑵若,函数在上的最小值是2,求的值;⑶在⑵的条件下,求直线与函数的图象所围成图形的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
在频率等高条形图中,与相差很大时,我们认为两个分类变量有关系,即可得出结论.【题目详解】在频率等高条形图中,与相差很大时,我们认为两个分类变量有关系,四个选项中,即等高的条形图中x1,x2所占比例相差越大,则分类变量x,y关系越强,故选D.【题目点拨】本题考查独立性检验内容,使用频率等高条形图,可以粗略的判断两个分类变量是否有关系,是基础题2、D【解题分析】
利用复数的运算法则、虚部的定义即可得出.【题目详解】解:∵复数,∴复数的虚部是﹣1,故选:D.【题目点拨】本题考查了复数的运算法则、虚部的定义,属于基础题.3、B【解题分析】
“至少有一个”的否定变换为“一个都没有”,即可求出结论.【题目详解】“三角形的内角中至少有一个不大于60°”时,反设是假设三内角都大于.故选:B.【题目点拨】本题考查反证法的概念,注意逻辑用语的否定,属于基础题.4、B【解题分析】
由并集的定义求解即可.【题目详解】由题,则,故选:B【题目点拨】本题考查集合的并集运算,属于基础题.5、A【解题分析】
由归纳假设,推得的结论,结合放缩法,便可以得出结论.【题目详解】假设当时,++…+,故当时,++…++<,因为,++…+,故选A.【题目点拨】本题主要考查数学归纳法的步骤,以及放缩法的运用,意在考查学生的逻辑推理能力.6、A【解题分析】
根据回归直线过样本数据中心点,并结合回归直线的斜率来进行判断。【题目详解】由于回归直线必过样本的数据中心点,则回归直线和回归直线都过点,做了两次试验,两条回归直线的斜率没有必然的联系,若斜率不相等,则两回归直线必交于点,若斜率相等,则两回归直线重合,所以,A选项正确,B、C、D选项错误,故选:A.【题目点拨】本题考查回归直线的性质,考查“回归直线过样本数据的中心点”这个结论,同时也要抓住回归直线的斜率来理解,考查分析理解能力,属于基础题。7、C【解题分析】
令,则函数至少有1个零点等价于函数至少有1个零点,对函数求导,讨论和时,函数的单调性,以及最值的情况,即可求出满足题意的实数的取值范围。【题目详解】由题可得函数的定义域为;令,则,函数至少有1个零点等价于函数至少有1个零点;;(1)当时,则在上恒成立,即函数在单调递增,当时,,当时,,由零点定理可得当时,函数在有且只有一个零点,满足题意;(2)当时,令,解得:,令,解得:,则函数在上单调递增,在上单调递减,当时,,所以要使函数至少有1个零点,则,解得:综上所述:实数的取值范围是:故答案选C【题目点拨】本题主要考查利用导数研究函数的零点个数的问题,由导数研究函数的单调区间以及最值是解题的关键,属于中档题。8、A【解题分析】若f(x)=ax2+bx+c(c≠0)是偶函数,则,则是奇函数,选A.9、B【解题分析】分析:利用二项展开式的通项公式求出的第项,令的指数为2求出展开式中的系数.然后求解即可.详解:6展开式中通项
令可得,,
∴展开式中x2项的系数为1,
在的展开式中,含项的系数为:1.
故选:B.点睛:本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.10、C【解题分析】试题分析:由已知,所以故选C.【考点】等差数列及其运算【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.11、B【解题分析】
由向量垂直可得,求得x,及向量的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模.【题目详解】由,可得,代入坐标运算可得x-4=0,解得x=4,所以,得=5,选B.【题目点拨】求向量的模的方法:一是利用坐标,二是利用性质,结合向量数量积求解.12、B【解题分析】由正态分布的性质可得,图中阴影部分的面积S=0.9545-0.6827则落入阴影部分(曲线C为正态分布N(-1,1)的密度曲线)的点的个数的估计值为本题选择B选项.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
,所以,所以,故当时,的最小值是.考点:向量的模点评:本题考查向量的模的最值,解题的关键是能准确的表示出模的函数,再求解最值.14、2【解题分析】
求出数列的首项和公差,求出的表达式,然后利用基本不等式求出的最小值并求出等号成立时的值,于此可得出答案.【题目详解】设等等差数列的公差为,则,解得,所以,,所以,,等号成立,当且仅当时,等号成立,但,由双勾函数的单调性可知,当或时,取最小值,当时,;当时,,,因此,当时,取最小值,故答案为.【题目点拨】本题考查等差数列的求和公式,考查基本不等式与双勾函数求最值,利用基本不等式要注意“一正、二定、三相等”这三个条件,在等号不成立时,则应考查双勾函数的单调性求解,考查分析能力与计算能力,属于中等题.15、【解题分析】
根据已知将x=x+2代入等式可得,可知为周期T=4的周期函数,化简,再由奇函数的性质可得其值.【题目详解】由题得,则有,因为为定义在R上的奇函数,那么,则,故.【题目点拨】本题考查奇函数的性质和周期函数,属于常见考题.16、【解题分析】
由复数乘法法则即可计算出结果【题目详解】.【题目点拨】本题考查了复数的乘法计算,只需按照计算法则即可得到结果,较为简单三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、[,1)∪(,+∞).【解题分析】
先求出当命题p,q为真命题时的取值范围,由p∨q真,p∧q假可得p与q一真一假,由此可得关于的不等式组,解不等式组可得结论.【题目详解】当命题p为真,即函数y=loga(x+3)在(0,+∞)上单调递减时,可得.当命题q为真,即函数y=x2+(2a-3)x+1的图像与x轴交于不同的两点,可得,解得,又,所以当q为真命题时,有.∵p∨q为真,p∧q为假,∴p与q一真一假.①若p真q假,则,解得;②若p假q真,则,解得.综上可得或.∴实数a的取值范围是[,1)∪(,+∞).【题目点拨】根据命题的真假求参数的取值范围的步骤:(1)求出当命题p,q为真命题时所含参数的取值范围;(2)判断命题p,q的真假性;(3)根据命题的真假情况,利用集合的交集和补集的运算,求解参数的取值范围.18、.【解题分析】分析:先求均值,代入求得,再求自变量为-4所对应函数值即可.详解:由题意可知=(18+13+10-1)=10,=(24+34+38+64)=40,=-2.又回归方程=-2x+过点(10,40),故=60.所以当x=-4时,=-2×(-4)+60=68.故当气温为-4℃时,用电量的度数约为68度.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,写出回归方程,回归直线方程恒过点.19、(1)分布列见解析.(2)分布列见解析;元.【解题分析】分析:(1)根据表格得到该超市水果日需求量(单位:千克)的分布列;(2)若A水果日需求量为140千克,则X=140×(15﹣10)﹣(150﹣140)×(10﹣8)=680元,则P(X=680)==0.1.若A水果日需求量不小于150千克,则X=150×(15﹣10)=750元,且P(X=750)=1﹣0.1=0.2.由此能求出X的分布列和数学期望E(X).详解:(1)的分布列为(2)若水果日需求量为千克,则元,且.若水果日需求量不小于千克,则元,且.故的分布列为元.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.20、(1);(2)196万.【解题分析】试题分析:(1)先求出五对数据的平均数,求出年份和人口数的平均数,得到样本中心点,把所给的数据代入公式,利用最小二乘法求出线性回归方程的系数,再求出a的值,从而得到线性回归方程;(2)把x=5代入线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届高考政治一轮复习课后限时集训25文化的继承性与文化发展含解析新人教版
- 墙体彩绘施工合同幼儿园教育墙绘
- 《全科医学概论上》课件
- 重庆人文科技学院《药理学基础》2021-2022学年第一学期期末试卷
- 重庆人文科技学院《水墨实验》2023-2024学年第一学期期末试卷
- 重庆人文科技学院《广播播音与主持实训》2021-2022学年第一学期期末试卷
- 2024北京十二中八年级(上)期中历史(教师版)
- 安全员(兼职)岗位职责
- 重庆三峡学院《钢结构原理》2022-2023学年第一学期期末试卷
- Web前端及微信小程序开发工程师岗位职责职位要求
- 小学信息科技《数据与编码-探索生活中的“编码”》教学设计
- 2024年云网安全应知应会考试题库
- 温差应力 (2)
- 《培训与开发》课件.ppt
- 新初一分班考试-英语真题10页
- 有机肥检验单(精编版)
- 机械同步式多级油缸
- 码头工程安全生产文明施工措施
- 《电子政务项目运行维护经费指导意见》-深圳政府在线
- 初中人音版八年级上册音乐2.4欣赏总有一天(15张)ppt课件
- 风湿性心脏病二尖瓣狭窄伴关闭不全;全心衰pbl教学
评论
0/150
提交评论