版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省永丰中学高二数学第二学期期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某单位为了了解用电量(度)与气温()之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温()101318-1用电量(度)38342464由表中数据得回归直线方程中的,预测当气温为时,用电量度数约为()A.64 B.65 C.68 D.702.若向量,,则向量与()A.相交 B.垂直 C.平行 D.以上都不对3.在正四棱锥中,,直线与平面所成的角为,为的中点,则异面直线与所成角为()A. B. C. D.4.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出一个球,直到取出的球是白色为止,所需要的取球次数为随机变量X,则X的可能取值为()A.1,2,…,6 B.1,2,…,7 C.1,2,…,11 D.1,2,3…5.已知下列说法:①对于线性回归方程,变量增加一个单位时,平均增加5个单位;②甲、乙两个模型的分别为0.98和0.80,则模型甲的拟合效果更好;③对分类变量X与Y,随机变量的观测值k越大,则判断“X与Y有关系”的把握程度越大;④两个随机变量的线性相关性越强,则相关系数就越接近1.其中说法错误的个数为()A.1 B.2 C.3 D.46.已知是定义在上的偶函数,且,当时,,则不等式的解集是()A. B. C. D.以上都不正确7.已知函数,表示的曲线过原点,且在处的切线斜率均为,有以下命题:①的解析式为;②的极值点有且仅有一个;③的最大值与最小值之和等于零.其中正确的命题个数为()A.0个 B.1个 C.2个 D.3个8.在平面直角坐标系中,由坐标轴和曲线所围成的图形的面积为()A. B. C. D.9.下列关于积分的结论中不正确的是()A. B.C.若在区间上恒正,则 D.若,则在区间上恒正10.已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概率()A. B. C. D.11.在中,内角所对应的边分别为,且,若,则边的最小值为()A. B. C. D.12.下列命题是真命题的是()A.,B.设是公比为的等比数列,则“”是“为递增数列”的既不充分也不必要条件C.“”是“”的充分不必要条件D.的充要条件是二、填空题:本题共4小题,每小题5分,共20分。13.已知,,则向量,的夹角为________.14.将4个不同的小球任意放入3个不同的盒子中,则每个盒子中至少有1个小球的概率为________.15.已知函数的导函数为,且满足,则__________.16.三棱锥P﹣ABC中,PA=PB=AB=AC=BC,M是PA的中点,N是AB的中点,当二面角P﹣AB﹣C为时,则直线BM与CN所成角的余弦值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,已知平面,且四边形为直角梯形,,是中点。(1)求异面直线与所成角的大小;(2)求与平面所成角的大小。18.(12分)已知函数.(Ⅰ)若函数在上是单调递增函数,求实数的取值范围;(Ⅱ)若,对任意,不等式恒成立,求实数的取值范围.19.(12分)已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.(1)求圆的标准方程;(2)设直线与圆相交于A,B两点,求实数的取值范围;(3)在(2)的条件下,是否存在实数,使得弦的垂直平分线过点.20.(12分)已知函数(a∈R).(1)讨论y=f(x)的单调性;(2)若函数f(x)有两个不同零点x1,x2,求实数a的范围并证明.21.(12分)如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;22.(10分)的内角A,B,C的对边分别为a,b,c.已知.(1)求角C;(2)若,,求的周长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
先求解出气温和用电量的平均数,然后将样本点中心代入回归直线方程,求解出的值,即可预测气温为时的用电量.【题目详解】因为,所以样本点中心,所以,所以,所以回归直线方程为:,当时,.故选:C.【题目点拨】本题考查回归直线方程的求解以及利用回归直线方程估计数值,难度较易.注意回归直线方程过样本点的中心.2、C【解题分析】
根据向量平行的坐标关系得解.【题目详解】,所以向量与平行.【题目点拨】本题考查向量平行的坐标表示,属于基础题.3、C【解题分析】试题分析:连接交于点,连接.因为为中点,所以,所以即为异面直线与所成的角.因为四棱锥为正四棱锥,所以,所以为在面内的射影,所以即为与面所成的角,即,因为,所以所以在直角三角形中,即面直线与所成的角为故选C.考点:直线与平面所成的角,异面直线所成的角【名师点睛】本题考查异面直线所成角,直线与平面所成的角,考查线面垂直,比较基础连接AC,BD交于点O,连接OE,OP,先证明∠PAO即为PA与面ABCD所成的角,即可得出结论.4、B【解题分析】从袋中每次任意取出一个球,直到取出的球是白色为止,所需要的取球次数为随机变量X,则有可能第一次取出球,也有可能取完6个红球后才取出白球.5、B【解题分析】
根据回归分析、独立性检验相关结论来对题中几个命题的真假进行判断。【题目详解】对于命题①,对于回归直线,变量增加一个单位时,平均减少个单位,命题①错误;对于命题②,相关指数越大,拟合效果越好,则模型甲的拟合效果更好,命题②正确;对于命题③,对分类变量与,随机变量的观测值越大,根据临界值表,则犯错误的概率就越小,则判断“与有关系”的把握程度越高,命题③正确;对于命题④,两个随机变量的线性相关性越强,则相关系的绝对值越接近于,命题④错误.故选:B.【题目点拨】本题考查回归分析、独立性检验相关概念的理解,意在考查学生对这些基础知识的理解和掌握情况,属于基础题。6、C【解题分析】令,则当时:,即函数在上单调递增,由可得:当时,;当时,;不等式在上的解集为,同理,不等式在上的解集为,综上可得:不等式的解集是.7、C【解题分析】
首先利用导数的几何意义及函数过原点,列方程组求出的解析式,则命题①得到判断;然后令,求出的极值点,进而求得的最值,则命题②③得出判断.【题目详解】∵函数的图象过原点,∴.又,且在处的切线斜率均为,∴,解得,∴.所以①正确.又由得,所以②不正确.可得在上单调递增,在上单调递减,在上单调递增,∴的极大值为,极小值为,又,∴,∴的最大值与最小值之和等于零.所以③正确.综上可得①③正确.故选C.【题目点拨】本题考查导数的几何意义的应用以及函数的极值、最值的求法,考查运算能力和应用能力,属于综合问题,解答时需注意各类问题的解法,根据相应问题的解法求解即可.8、C【解题分析】
根据余弦函数图象的对称性可得,求出积分值即可得结果.【题目详解】根据余弦函数图象的对称性可得,故选C.【题目点拨】本题主要考查定积分的求法,考查数学转化思想方法,属于基础题.9、D【解题分析】
结合定积分知识,对选项逐个分析可选出答案.【题目详解】对于选项A,因为函数是R上的奇函数,所以正确;对于选项B,因为函数是R上的偶函数,所以正确;对于选项C,因为在区间上恒正,所以图象都在轴上方,故正确;对于选项D,若,可知的图象在区间上,在轴上方的面积大于下方的面积,故选项D不正确.故选D.【题目点拨】本题考查了定积分,考查了函数的性质,属于基础题.10、C【解题分析】
记“三人中至少有两人解答正确”为事件;“甲解答不正确”为事件,利用二项分布的知识计算出,再计算出,结合条件概率公式求得结果.【题目详解】记“三人中至少有两人解答正确”为事件;“甲解答不正确”为事件则;本题正确选项:【题目点拨】本题考查条件概率的求解问题,涉及到利用二项分布公式求解概率的问题.11、D【解题分析】
根据由正弦定理可得,由余弦定理可得,利用基本不等式求出,求出边的最小值.【题目详解】根据由正弦定理可得.
由余弦定理可得..即.,
故边的最小值为,
故选D.【题目点拨】本题主要考查了余弦定理、基本不等式的应用,解三角形,属于中档题.12、B【解题分析】
取特殊值来判断A选项中命题的正误,取特殊数列来判断B选项中命题的正误,求出不等式,利用集合包含关系来判断C选项命题的正误,取特殊向量来说明D选项中命题的正误.【题目详解】对于A选项,当时,,所以,A选项中的命题错误;对于B选项,若,则等比数列的公比为,但数列是递减数列,若,等比数列是递增数列,公比为,所以,“”是“为递增数列”的既不充分也不必要条件,B选项中的命题正确;对于C选项,解不等式,得或,由于,所以,“”是“”的既不充分也不必要条件,C选项中的命题错误;对于D选项,当时,,但与不一定垂直,所以,D选项中的命题错误.故选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据条件即可求出,利用,根据向量的夹角范围即可得出夹角.【题目详解】,.,故答案为:.【题目点拨】本题考查向量的数量积公式,向量数量积的坐标表示,属于基础题,难度容易.14、【解题分析】试题分析:将个不同的小球任意放入个不同的盒子中,每个小球有种不同的放法,共有种放法,每个盒子中至少有个小球的放法有种,故所求的概率.考点:1、排列组合;2、随机变量的概率.15、-1【解题分析】分析:先求导数,解得,代入解得.详解:因为,所以所以因此,点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.16、【解题分析】
先连结PN,根据题意,∠PNC为二面角P-AB-C的平面角,得到∠PNC=,根据向量的方法,求出两直线方向向量的夹角,即可得出结果.【题目详解】解:连结PN,因为N为AB中点,PA=PB,CA=CB,所以,,所以,∠PNC为二面角P-AB-C的平面角,所以,∠PNC=,设PA=PB=AB=AC=BC=2,则CN=PN=BM=,,设直线BM与CN所成角为,,【题目点拨】本题主要考查异面直线所成的角,灵活运用向量法求解即可,属于常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)推导出PA⊥AB,PA⊥AD.以A为原点,AB,AD,AP分别为x轴,y轴,z轴,建立空间直角坐标系A-xyz,利用向量法能求出异面直线DP与CQ所成角的余弦值.(2)设平面法向量,与平面所成角,由得出,代入即可得解.【题目详解】(1)以A为原点,AB,AD,AP分别为x轴,y轴,z轴,建立空间直角坐标系A-xyz,,设与所成角是所以与所成角是.(2)设平面法向量,与平面所成角令,所以与平面所成角.【题目点拨】本题考查异面直线所成角的余弦值、线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.18、(Ⅰ);(Ⅱ).【解题分析】
(Ⅰ)将问题转化为对恒成立,然后利用参变量分离法得出,于是可得出实数的取值范围;(Ⅱ)由(Ⅰ)知,函数在上是增函数,设,并设,得知在区间上为减函数,转化为在上恒成立,利用参变量分离法得到,然后利用导数求出函数在上的最大值可求出实数的取值范围。【题目详解】(Ⅰ)易知不是常值函数,∵在上是增函数,∴恒成立,所以,只需;(Ⅱ)因为,由(Ⅰ)知,函数在上单调递增,不妨设,则,可化为,设,则,所以为上的减函数,即在上恒成立,等价于在上恒成立,设,所以,因,所以,所以函数在上是增函数,所以(当且仅当时等号成立).所以.即的最小值为1.【题目点拨】本题考查函数的单调性与导数之间的关系,考查利用导数研究函数不等式恒成立问题,对于函数双变量不等式问题,应转化为新函数的单调性问题,难点在于利用不等式的结构构造新函数,考查分析能力,属于难题。19、(Ⅰ)(Ⅱ)(Ⅲ)存在实数【解题分析】
本试题主要考查圆的方程的求解,以及直线与圆的位置关系的运用.解:(Ⅰ)设圆心为().由于圆与直线相切,且半径为,所以,即.因为为整数,故.故所求圆的方程为.…………………4分(2)把直线ax-y+5=0,即y=ax+5代入圆的方程,消去y整理,的(Ⅲ)设符合条件的实数存在,直线的斜率为的方程为,即由于垂直平分弦AB,故圆心必在上,所以,解得.由于,故存在实数使得过点的直线垂直平分弦AB………14分20、(1)见解析;(2),证明见解析【解题分析】
(1)先求得函数的单调区间,然后求函数的导数,对分成两种情况,分类讨论函数的单调区间.(2)令,分离常数,构造函数,利用导数求得的单调区间和最大值,结合图像求得的取值范围.构造函数(),利用导数证得在成立,从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 1.4 地球的圈层结构 课件 人教版(2019)必修一高一上学期
- 七年级上册生命生态安全教案全册1
- 继教课件混凝土结构验收规范
- 4S店装修合同解除范文
- 4S店装修分包协议
- 2021年大学宣传部学期工作总结5篇
- 2023-2024学年全国小学四年级上信息与技术人教版模拟试卷(含答案解析)
- 2024年赣州申请客运从业资格证模拟考试
- 2024年鹰潭客运从业资格证理论考试题
- 2024年江苏客运资格专业能力考试
- Catia百格线生成宏
- 业务流程绘制方法IDEF和IDEFPPT课件
- 锅炉安全基础知识
- 幼儿园科学教育论文范文
- 驾校质量信誉考核制度
- 用电检查工作流程图
- 电动葫芦的设计计算电动起重机械毕业设计论文
- (完整版)学校安办主任安全工作职责
- PCR仪使用手册
- 传感器技术第八章
- 高中生物《植物生长素》说课稿
评论
0/150
提交评论