2024届云南省玉溪市峨山民中数学高二下期末调研模拟试题含解析_第1页
2024届云南省玉溪市峨山民中数学高二下期末调研模拟试题含解析_第2页
2024届云南省玉溪市峨山民中数学高二下期末调研模拟试题含解析_第3页
2024届云南省玉溪市峨山民中数学高二下期末调研模拟试题含解析_第4页
2024届云南省玉溪市峨山民中数学高二下期末调研模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省玉溪市峨山民中数学高二下期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.随机变量的概率分布为,其中是常数,则()A. B. C. D.2.函数的图象是由函数的图像向左平移个单位得到的,则()A. B. C. D.3.如图是计算的值的程序框图,则图中①②处应填写的语句分别是()A., B.,C., D.,4.若曲线在点(0,n)处的切线方程x-y+1=0,则()A., B.,C., D.,5.一口袋里有大小形状完全相同的10个小球,其中红球与白球各2个,黑球与黄球各3个,从中随机取3次,每次取3个小球,且每次取完后就放回,则这3次取球中,恰有2次所取的3个小球颜色各不相同的概率为()A. B. C. D.6.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()A.1440种 B.960种 C.720种 D.480种7.以,为端点的线段的垂直平分线方程是A. B. C. D.8.已知点是的外接圆圆心,.若存在非零实数使得且,则的值为()A. B. C. D.9.用反证法证明:“实数中至少有一个不大于0”时,反设正确的是()A.中有一个大于0 B.都不大于0C.都大于0 D.中有一个不大于010.若全集,集合,则()A. B. C. D.11.已知,则等于(

)A. B. C. D.12.袋中有大小和形状都相同的个白球、个黑球,现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知空间整数点的序列如下:,,,,,,,,,,,,,,…,则是这个序列中的第____________个.14.从装有3个红球,2个白球的袋中随机取出2个球,设其中有个红球,则为_____.15.下表提供了某学生做题数量x(道)与做题时间y(分钟)的几组对应数据:x(道)3456y(分钟)2.5t44.5根据上表提供的数据,得y关于x的线性回归方程为则表中t的值为_____.16.双曲线上一点到点的距离为9,则点到点的距离______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系xOy中,椭圆C:的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.18.(12分)如图,过椭圆的左焦点作轴的垂线交椭圆于点,点和点分别为椭圆的右顶点和上顶点,.(1)求椭圆的离心率;(2)过右焦点作一条弦,使,若的面积为,求椭圆的方程.19.(12分)(1)六个从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有几种?(2)把5件不同产品摆成一排,若产品与产品相邻,且产品与产品不相邻,则不同的摆法有几种?(3)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法有几种?20.(12分)如图,在直三棱柱中,平面面,交于点,且.(Ⅰ)求证:;(Ⅱ)若,求三棱锥的体积.21.(12分)已知椭圆:的离心率为,短轴长为1.(1)求椭圆的标准方程;(1)若圆:的切线与曲线相交于、两点,线段的中点为,求的最大值.22.(10分)某水产养殖基地要将一批海鲜用汽车从所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且运费由水产养殖基地承担.若水产养殖基地恰能在约定日期(×月×日)将海鲜送达,则销售商一次性支付给水产养殖基地万元;若在约定日期前送到,每提前一天销售商将多支付给水产养殖基地万元;若在约定日期后送到,每迟到一天销售商将少支付给水产养殖基地万元.为保证海鲜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送海鲜,已知下表内的信息:统计信息汽车行驶路线不堵车的情况下到达城市乙所需时间(天)堵车的情况下到达城市乙所需时间(天)堵车的概率运费(万元)公路公路(注:毛利润销售商支付给水产养殖基地的费用运费)(Ⅰ)记汽车走公路时水产养殖基地获得的毛利润为(单位:万元),求的分布列和数学期望.(Ⅱ)假设你是水产养殖基地的决策者,你选择哪条公路运送海鲜有可能让水产养殖基地获得的毛利润更多?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:由已知得可得a值,在求出期望算方差即可.详解:因为随机变量的概率分布为,故得,故E(X)=,又,而,故=,选B点睛:考查分布列的性质和期望、方差的计算,熟悉公式即可,属于基础题.2、B【解题分析】

把的图像向左平移个单位后得到的图像,化简后可得的值,利用两角和的余弦和正弦展开后可得的值.【题目详解】把的图像向左平移个单位后得到所得图像的解析式为,根据可得①,所以即(舍),又对①化简可得,故,故选B.【题目点拨】三角函数的图像往往涉及振幅变换、周期变换和平移变换,注意左右平移时是自变量作相应的变化,而且周期变换和平移变换(左右平移)的次序对函数解析式的也有影响,比如,它可以由先向左平移个单位,再纵坐标不变,横坐标变为原来的,也可以先保持纵坐标不变,横坐标变为原来的,再向左平移..3、A【解题分析】该程序是求数列的前16项和,①处变量每次增加2,②处是循环控制条件,循环体共执行了16次,故时,退出循环,选A.4、A【解题分析】

根据函数的切线方程得到切点坐标以及切线斜率,再根据导数的几何意义列方程求解即可.【题目详解】曲线在点处的切线方程是,,则,即切点坐标为,切线斜率,曲线方程为,则函数的导数即,即,则,,故选A.【题目点拨】本题主要考查导数的几何意义的应用,属于中档题.应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1)已知切点求斜率,即求该点处的导数;(2)己知斜率求切点即解方程;(3)巳知切线过某点(不是切点)求切点,设出切点利用求解.5、C【解题分析】每次所取的3个小球颜色各不相同的概率为:,∴这3次取球中,恰有2次所取的3个小球颜色各不相同的概率为:.本题选择C选项.6、B【解题分析】5名志愿者先排成一排,有种方法,2位老人作一组插入其中,且两位老人有左右顺序,共有=960种不同的排法,选B.7、B【解题分析】

求出的中点坐标,求出的垂直平分线的斜率,然后求出垂直平分线方程.【题目详解】因为,,所以的中点坐标,直线的斜率为,所以的中垂线的斜率为:,所以以,为端点的线段的垂直平分线方程是,即.故选:B【题目点拨】本题考查直线的一般式方程与直线的垂直关系,直线方程的求法,考查计算能力.8、D【解题分析】

根据且判断出与线段中点三点共线,由此判断出三角形的形状,进而求得的值.【题目详解】由于,由于,所以与线段中点三点共线,根据圆的几何性质可知直线垂直平分,于是是以为底边的等腰三角形,于是,故选D.【题目点拨】本小题主要考查平面向量中三点共线的向量表示,考查圆的几何性质、等腰三角形的几何性质,属于中档题.9、C【解题分析】

根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而要证明题的否定为:“都大于0”,从而得出结论.【题目详解】解:根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而命题:“实数中至少有一个不大于0”的否定为“都大于0”,故选:.【题目点拨】本题主要考查用命题的否定,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于基础题.10、C【解题分析】

分别化简求解集合U,A,再求补集即可【题目详解】因为,,所以.故选:C【题目点拨】本题考查集合的运算,考查运算求解能力.11、C【解题分析】分析:根据条件概率的计算公式,即可求解答案.详解:由题意,根据条件概率的计算公式,则,故选C.点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.12、D【解题分析】

分别计算第一次取到白球的概率和第一次取到白球且第二次取到白球的概率,根据条件概率公式求得结果.【题目详解】记“第一次取到白球”为事件,则记“第一次取到白球且第二次取到白球”为事件,则在第一次取到白球的条件下,第二次取到白球的概率:本题正确选项:【题目点拨】本题考查条件概率的求解问题,易错点是忽略抽取方式为不放回的抽取,错误的认为每次抽到白球均为等可能事件.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】按照规律:三个数字和相等的先看最小数字,再看第二小的数字;相同数字组成的点,先看最小数字排的位置,再看第二小的数字排的位置。三个数字和为的1个,三个数字和为的3个,三个数字之和为6的是3+6+1=10个,三个数字和为7,由组成的共3个,由三个数字组成的共6个,所以是第29个。应填答案。点睛:解答本题的关键是搞清题设中数组的规律,然后依据规律做出正确的推理和判断。求解时,先观察出数组的规律是:三个数字和相等的先看最小数字,再看第二小的数字;相同数字组成的点,先看最小数字排的位置,再看第二小的数字排的位置。然后做出推断:三个数字和为的1个,三个数字和为的3个,三个数字之和为6的是3+6+1=10个,三个数字和为7,由组成的共3个,由三个数字组成的共6个,进而得出是第29个。14、【解题分析】分析:由题意,从装有个红球和个白球的袋中随机取出个球的取法,再求得当个球都是红球的取法,利用古典概型的概率计算公式,即可得到答案.详解:由题意,从装有个红球和个白球的袋中随机取出个球,共有种方法,其中当个球都是红球的取法有种方法,所以概率为.点睛:本题主要考查了古典概型及其概率的计算公式的应用,其中概率排列、组合的知识得到基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力.15、3【解题分析】

现求出样本的中心点,再代入回归直线的方程,即可求得的值.【题目详解】由题意可得,因为对的回归直线方程是,所以,解得.【题目点拨】本题主要考查了回归直线方程的应用,其中解答的关键是利用回归直线方程恒过样本中心点,代入求解,着重考查了推理与计算能力,属于基础题.16、或【解题分析】

先根据双曲线方程求出焦点坐标,再结合双曲线的定义可得到,进而可求出的值,得到答案.【题目详解】双曲线,,,,和为双曲线的两个焦点,点在双曲线上,,解或,,或,故答案为:或.【题目点拨】本题主要考查的是双曲线的定义,属于基础题.求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据求解,注意对所求结果进行必要的验证,负数应该舍去,且所求距离应该不小于.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)由题意分别求得a,b的值即可确定椭圆方程;(2)解法一:由题意首先确定直线的方程,联立直线方程与圆的方程,确定点B的坐标,联立直线BF2与椭圆的方程即可确定点E的坐标;解法二:由题意利用几何关系确定点E的纵坐标,然后代入椭圆方程可得点E的坐标.【题目详解】(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.又因为DF1=,AF2⊥x轴,所以DF2=,因此2a=DF1+DF2=4,从而a=2.由b2=a2-c2,得b2=3.因此,椭圆C的标准方程为.(2)解法一:由(1)知,椭圆C:,a=2,因为AF2⊥x轴,所以点A的横坐标为1.将x=1代入圆F2的方程(x-1)2+y2=16,解得y=±4.因为点A在x轴上方,所以A(1,4).又F1(-1,0),所以直线AF1:y=2x+2.由,得,解得或.将代入,得,因此.又F2(1,0),所以直线BF2:.由,得,解得或.又因为E是线段BF2与椭圆的交点,所以.将代入,得.因此.解法二:由(1)知,椭圆C:.如图,连结EF1.因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而∠BF1E=∠B.因为F2A=F2B,所以∠A=∠B,所以∠A=∠BF1E,从而EF1∥F2A.因为AF2⊥x轴,所以EF1⊥x轴.因为F1(-1,0),由,得.又因为E是线段BF2与椭圆的交点,所以.因此.【题目点拨】本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.18、(1);(2).【解题分析】

(1)由可得,计算进而得答案。(2)设直线的方程,联立方程组,利用韦达定理,代入的面积公式计算整理即可。【题目详解】(1),,,,,解得,,故.(2)由(1)知椭圆方程可化简为.①易求直线的斜率为,故可设直线的方程为:.②由①②消去得.,.于是的面积,.因此椭圆的方程为,即【题目点拨】本题考查椭圆的离心率以及通过弦长公式求椭圆的相关量,属于一般题。19、(1)216(2)36(3)120【解题分析】分析:(1)分两种情况讨论甲在最左端时,有,当甲不在最左端时,有(种)排法,由分类计数加法原理可得结果;(2)分三步:将看成一个整体,将于剩余的2件产品全排列,有3个空位可选,根据分步计数乘法原理可得结果;(3)用表示歌舞类节目,小品类节目,相声类节目,利用枚举法可得共有种,每一种排法种的三个,两个可以交换位置,故总的排法为种.详解:(1)当甲在最左端时,有;当甲不在最左端时,乙必须在最左端,且甲也不在最右端,有(种)排法,共计(种)排法.(2)根据题意,分3步进行分析:产品与产品相邻,将看成一个整体,考虑之间的顺序,有种情况,将于剩余的2件产品全排列,有种情况,产品与产品不相邻,有3个空位可选,即有3种情况,共有种;(3)法一:用表示歌舞类节目,小品类节目,相声类节目,则可以枚举出下列10种:每一种排法种的三个,两个可以交换位置,故总的排法为种.法二:分两步进行:(1)先将3个歌曲进行全排,其排法有种;(2)将小品与相声插入将歌曲分开,若两歌舞之间只有一个其他节目,其插法有种.若两歌舞之间有两个其他节目时插法有种.所以由计数原理可得节目的排法共有(种).点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.20、(Ⅰ)见解析;(Ⅱ)【解题分析】

(Ⅰ)根据及直三棱柱特点可知;利用面面垂直性质可得平面,从而证得;利用线面垂直性质可知,从而根据线面垂直判定定理可证得平面,根据线面垂直性质可证得结论;(Ⅱ)根据体积桥将

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论