版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江杭州余杭区数学九上期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣22.一个群里共有个好友,每个好友都分别给群里的其他好友发一条信息,共发信息1980条,则可列方程()A. B. C. D.3.如图,已知一组平行线,被直线、所截,交点分别为、、和、、,且,,,则()A.4.4 B.4 C.3.4 D.2.44.若一个三角形的两条边的长度分别为2和4,且第三条边的长度是方程的解,则它的周长是()A.10 B.8或10 C.8 D.65.下列图形中既是轴对称图形又是中心对称图形的是()A. B.C. D.6.下列各式与是同类二次根式的是()A. B. C. D.7.下列关系式中,是反比例函数的是()A. B. C. D.8.如图,点在以为直径的内,且,以点为圆心,长为半径作弧,得到扇形,且,.若在这个圆面上随意抛飞镖,则飞镖落在扇形内的概率是()A. B. C. D.9.如图,直线l和双曲线y=(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A.S1<S2<S3 B.S1>S2>S3 C.S1=S2>S3 D.S1=S2<S310.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在.和,则该袋子中的白色球可能有()A.6个 B.16个 C.18个 D.24个二、填空题(每小题3分,共24分)11.的半径为4,圆心到直线的距离为2,则直线与的位置关系是______.12.用如图所示的两个转盘(分别进行四等分和三等分),设计一个“配紫色”的游戏(红色与蓝色可配成紫色),则能配成紫色的概率为__________.13.已知是一张等腰直角三角形板,,要在这张纸板中剪取正方形(剪法如图1所示),图1中剪法称为第次剪取,记所得的正方形面积为;按照图1中的剪法,在余下的和中,分别剪取两个全等正方形,称为第次剪取,并记这两个正方形面积和为,(如图2);再在余下的四个三角形中,用同样的方法分别剪取正方形,得到四个相同的正方形,称为第次剪取,并记这四个正方形的面积和为,(如图3);继续操作下去···则第次剪取后,___________.14.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,ΔPEF、ΔPDC、ΔPAB的面积分别为S、S1、S1.若S=1,则S1+S1=.15.如图,的半径为,双曲线的关系式分别为和,则阴影部分的面积是__________.16.如图,在平面直角坐标系中,点的坐标分别为,以原点为位似中心,把线段放大,点的对应点的坐标为,则点的对应点的坐标为__________.17.如图,函数y=的图象所在坐标系的原点是_______.18.如图,平行四边形ABCD的一边AB在x轴上,长为5,且∠DAB=60°,反比例函数y=和y=分别经过点C,D,则AD=_____.三、解答题(共66分)19.(10分)如图,一个圆形水池的中央垂直于水面安装了一个柱形喷水装置OA,顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.建立如图所示的直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间的关系式可以用表示,且抛物线经过点B,C;(1)求抛物线的函数关系式,并确定喷水装置OA的高度;(2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?20.(6分)解方程:21.(6分)实验探究:如图,和是有公共顶点的等腰直角三角形,,交于、点.(问题发现)(1)把绕点旋转到图,、的关系是_________(“相等”或“不相等”),请直接写出答案;(类比探究)(2)若,,把绕点旋转,当时,在图中作出旋转后的图形,并求出此时的长;(拓展延伸)(3)在(2)的条件下,请直接写出旋转过程中线段的最小值为_________.22.(8分)如图,抛物线与轴交于、两点,与轴交于点.(1)求点、、的坐标;(2)若点在轴的上方,以、、为顶点的三角形与全等,平移这条抛物线,使平移后的抛物线经过点与点,请你写出平移过程,并说明理由。23.(8分)如图,平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=﹣在第二象限内的图象相交于点A,与x轴的负半轴交于点B,与y轴的负半轴交于点C.(1)求∠BCO的度数;(2)若y轴上一点M的纵坐标是4,且AM=BM,求点A的坐标;(3)在(2)的条件下,若点P在y轴上,点Q是平面直角坐标系中的一点,当以点A、M、P、Q为顶点的四边形是菱形时,请直接写出点Q的坐标.24.(8分)为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,1.八年级:92,74,87,82,72,81,94,83,1,83,80,81,71,81,72,1,82,80,70,2.整理数据:七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875八年级7880.5应用数据:(1)由上表填空:a=,b=,c=,d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.25.(10分)已知:如图,在Rt△ABC中,∠ACB=90°,BC="3",tan∠BAC=,将∠ABC对折,使点C的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系(1)求过A、B、O三点的抛物线解析式;(2)若在线段AB上有一动点P,过P点作x轴的垂线,交抛物线于M,设PM的长度等于d,试探究d有无最大值,如果有,请求出最大值,如果没有,请说明理由.(3)若在抛物线上有一点E,在对称轴上有一点F,且以O、A、E、F为顶点的四边形为平行四边形,试求出点E的坐标.26.(10分)化简并求值:,其中m满足m2-m-2=0.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据二次根式有意义的条件可得,再解不等式即可.【详解】解:由题意得:,解得:,
故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2、B【分析】每个好友都有一次发给QQ群其他好友消息的机会,即每两个好友之间要互发一次消息;设有x个好友,每人发(x-1)条消息,则发消息共有x(x-1)条,再根据共发信息1980条,列出方程x(x-1)=1980.【详解】解:设有x个好友,依题意,得:x(x-1)=1980.故选:B.【点睛】本题考查了一元二次方程的应用,根据题意设出合适的未知数,再根据等量关系式列出方程是解题的关键.3、D【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵∴即解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.4、A【分析】本题先利用因式分解法解方程,然后利用三角形三边之间的数量关系确定第三边的长,最后求出周长即可.【详解】解:,,∴;由三角形的三边关系可得:腰长是4,底边是2,所以周长是:2+4+4=10.故选A.【点睛】本题考察了一元二次方程的解法与三角形三边之间的数量关系.5、B【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、不是轴对称图形,是中心对称图形,故本选项不合题意.故选:B.【点睛】此题考查的是中心对称图形和轴对称图形的识别,掌握中心对称图形和轴对称图形的概念是解决此题的关键.6、A【分析】根据同类二次根式的概念即可求出答案.【详解】解:(A)原式=2,故A与是同类二次根式;(B)原式=2,故B与不是同类二次根式;(C)原式=3,故C与不是同类二次根式;(D)原式=5,故D与不是同类二次根式;故选:A.【点睛】此题主要考查了同类二次根式的定义,正确化简二次根式是解题关键.7、B【解析】根据反比例函数、一次函数、二次函数的定义可得答案.【详解】解:y=2x-1是一次函数,故A错误;是反比例函数,故B正确;
y=x2是二次函数,故C错误;是一次函数,故D错误;
故选:B.【点睛】此题考查反比例函数、一次函数、二次函数的定义,解题关键在于理解和掌握反比例函数、一次函数、二次函数的意义.8、C【分析】如图,连接AO,∠BAC=120,根据等腰三角形的性质得到AO⊥BC,∠BAO=60,解直角三角形得到AB=,由扇形的面积公式得到扇形ABC的面积=,根据概率公式即可得到结论.【详解】如图,连接AO,∠BAC=120,∵AB=AC,BO=CO,∴AO⊥BC,∠BAO=60,∵BC=2,∴BO=1,∴AB=BO÷cos30°=,∴扇形ABC的面积=,∵⊙O的面积=,∴飞镖落在扇形ABC内的概率是=,故选:C.【点睛】本题考查了几何概率,扇形的面积的计算,等腰三角形的性质,解直角三角形的运用,正确的识别图形是解题的关键.9、D【分析】根据双曲线的解析式可得所以在双曲线上的点和原点形成的三角形面积相等,因此可得S1=S2,设OP与双曲线的交点为P1,过P1作x轴的垂线,垂足为M,则可得△OP1M的面积等于S1和S2,因此可比较的他们的面积大小.【详解】根据双曲线的解析式可得所以可得S1=S2=设OP与双曲线的交点为P1,过P1作x轴的垂线,垂足为M因此而图象可得所以S1=S2<S3故选D【点睛】本题主要考查双曲线的意义,关键在于,它代表的就是双曲线下方的矩形的面积.10、B【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【详解】解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,
∴摸到白球的频率为1-0.15-0.45=0.4,
故口袋中白色球的个数可能是40×0.4=16个.
故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.二、填空题(每小题3分,共24分)11、相交【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,
∵4>2,即:d<r,
∴直线L与⊙O的位置关系是相交.
故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.12、【分析】根据已知列出图表,求出所有结果,即可得出概率.【详解】列表得:红黄绿蓝红(红,红)(红,黄)(红,绿)(红,蓝)蓝(蓝,红)(蓝,黄)(蓝,绿)(蓝,蓝)蓝(蓝,红)(蓝,黄)(蓝,绿)(蓝,蓝)所有等可能的情况数有12种,其中配成紫色的情况数有3种,
∴P配成紫色=故答案为:【点睛】此题主要考查了列表法求概率,根据已知列举出所有可能,进而得出配紫成功概率是解题关键.13、【分析】根据题意可求得△ABC的面积,且可得出每个正方形是剩余三角形面积的一半,即为上一次剪得的正方形面积的一半,可得出与△ABC的面积之间的关系,可求得答案.【详解】∵AC=BC=2,
∴∠A=∠B=45°,
∵四边形CEDF为正方形,
∴DE⊥AC,
∴AE=DE=DF=BF,
∴,同理每次剪得的正方形的面积都是所在三角形面积的一半,∴,同理可得,依此类推可得,故答案为:【点睛】本题主要考查了正方形与等腰直角三角形的性质,根据条件找到与之间的关系是解题的关键.注意规律的总结与归纳.14、2.【详解】∵E、F分别为PB、PC的中点,∴EFBC.∴ΔPEF∽ΔPBC.∴SΔPBC=4SΔPEF=8s.又SΔPBC=S平行四边形ABCD,∴S1+S1=SΔPDC+SΔPAB=S平行四边形ABCD=8s=2.15、2π【分析】根据反比例函数的对称性可得图中阴影部分的面积为半圆面积,进而可得答案.【详解】解:双曲线和的图象关于x轴对称,根据图形的对称性,把第三象限和第四象限的阴影部分的面积拼到第二和第一象限中的阴影中,可得阴影部分就是一个扇形,并且扇形的圆心角为180°,半径为2,所以S阴影=.故答案为:2π.【点睛】本题考查的是反比例函数和阴影面积的计算,题目中的两条双曲线关于x轴对称,圆也是一个对称图形,可以得到图中阴影部分的面积等于圆心角为180°,半径为2的扇形的面积,这是解题的关键.16、【分析】由题意可知:OA=2,AB=1,,△OAB∽△,根据相似三角形的性质列出比例式即可求出,从而求出点的坐标.【详解】由题意可知:OA=2,AB=1,,△OAB∽△∴即解得:∴点的坐标为(4,2)故答案为:.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的对应边成比例是解决此题的关键.17、M【分析】由函数解析式可知函数关于y轴对称,即可求解;【详解】解:由已知可知函数y=的图象关于y轴对称,所以点M是原点;
故答案为:M.【点睛】本题考查反比例函数的图象及性质;熟练掌握函数的解析式与函数图象的关系是解题的关键.18、1【分析】设点C(),则点D(),然后根据CD的长列出方程,求得x的值,得到D的坐标,解直角三角形求得AD.【详解】解:设点C(),则点D(),∴CD=x﹣()=∵四边形ABCD是平行四边形,∴CD=AB=5,∴=5,解得x=1,∴D(﹣3,),作DE⊥AB于E,则DE=,∵∠DAB=60°,故答案为:1.【点睛】本题考查的是平行四边形的性质、反比例性质、特殊角的三角函数值,利用平行四边形性质和反比例函数的性质列出等式是解题的关键.三、解答题(共66分)19、(1),米;(2)米;(3)至少要米.【分析】(1)根据点B、C的坐标,利用待定系数法即可得抛物线的解析式,再求出时y的值即可得OA的高度;(2)将抛物线的解析式化成顶点式,求出y的最大值即可得;(3)求出抛物线与x轴的交点坐标即可得.【详解】(1)由题意,将点代入得:,解得,则抛物线的函数关系式为,当时,,故喷水装置OA的高度米;(2)将化成顶点式为,则当时,y取得最大值,最大值为,故喷出的水流距水面的最大高度是米;(3)当时,,解得或(不符题意,舍去),故水池的半径至少要米,才能使喷出的水流不至于落在池外.【点睛】本题考查了二次函数的实际应用,熟练掌握待定系数法和二次函数的性质是解题关键.20、,【分析】找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.【详解】解:整理得解得:,【点睛】本题考查了解一元二次方程-公式法,熟练掌握一元二次方程的几种常用解法是解题关键.21、(1)相等;(2)或;(3)1.【分析】(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;
(2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到,进而得到PD=;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,进而得出PB=,PD=BD+PB=;
(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小.【详解】(1)∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,
∴BA=CA,DA=EA,∠BAC-∠DAC=∠DAE-∠DAC即∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),
∴BD=CE;
故答案为:相等.
(2)作出旋转后的图形,若点C在AD上,如图2所示:
∵∠EAC=90°,
∴CE=,
∵∠PDA=∠AEC,∠PCD=∠ACE,
∴△PCD∽△ACE,
∴,即
∴PD=
若点B在AE上,如图2所示:
∵∠BAD=90°,
∴Rt△ABD中,,BE=AE−AB=2,
∵∠ABD=∠PBE,∠BAD=∠BPE=90°,
∴△BAD∽△BPE,
∴,即,
解得PB=,
∴PD=BD+PB=,
综上可得,PD的长为或.
(2)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小
在Rt△PED中,PD=DE⋅sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.
当小三角形旋转到图中△ACB的位置时,
在Rt△ACE中,CE=,
在Rt△DAE中,DE=,
∵四边形ACPB是正方形,
∴PC=AB=3,
∴PE=3+4=7,
在Rt△PDE中,PD=,
即旋转过程中线段PD的最小值为1.【点睛】本题考查了旋转与圆的综合问题,熟练掌握旋转的性质,全等三角形的判定与性质,圆的切线是解题的关键.22、(1),,;(2),.理由见解析.【分析】(1)令中y=0,求出点A、B的坐标,令x=0即可求出点C的坐标;(2)分两种全等情况求出点D的坐标,再设平移后的解析式,将点B、D的坐标代入即可求出解析式,由平移前的解析式根据顶点式的数值变化得到平移的方向与距离.【详解】(1)令中y=0,得,解得:,∴,.当中x=0时,y=-3,∴.(2)当△ABD1≌△ABC时,∵,∴由轴对称得D1(0,3),设平移后的函数解析式为,将点B、D1的坐标代入,得,解得,∴平移后的解析式为,∵平移前的解析式为,∴将向右平移3个单位,再向上3个单位得到;当△ABD2≌△BAC时,即△ABD2≌△BAD1,作D2H⊥AB,∴AH=OB=1,D2H=OD1=3,∴OH=OA-AH=3-1=2,∴D2(-2,3),设平移后的解析式为,将点B、D2的坐标代入得,解得,∴平移后的函数解析式为,∵平移前的解析式为,∴将向右平移1个单位,再向上平移3个单位得到.【点睛】此题考查二次函数图象与坐标轴交点的求法,函数图象平移的规律,求图象平移规律时需先求得函数的解析式,将平移前后的解析式都化为顶点式,根据顶点式中h、k的变化确定平移的方向与距离.23、(1)∠BCO=45°;(2)A(﹣4,1);(3)点Q坐标为(﹣4,﹣4)或(﹣4,6)或(﹣4,)或(4,1).【分析】(1)证明△OBC是等腰直角三角形即可解决问题;(2)如图1中,作MN⊥AB于N.根据一次函数求出交点N的坐标,用b表示点A坐标,再利用待定系数法即可解决问题;(3)分两种情形:①当菱形以AM为边时,②当AM为菱形的对角线时,分别求解即可.【详解】(1)∵一次函数y=﹣x+b的图象交x轴于B,交y轴于C,则B(b,0),C(0,b),∴OB=OC=﹣b,∵∠BOC=90°∴△OBC是等腰直角三角形,∴∠BCO=45°.(2)如图1中,作MN⊥AB于N,∵M(0,4),MN⊥AC,直线AC的解析式为:y=﹣x+b,∴直线MN的解析式为:y=x+4,联立,解得:,∴N(,),∵MA=MB,MN⊥AB,∴NA=BN,设A(m,n),则有,解得:,∴A(﹣4,b+4),∵点A在y=﹣上,∴﹣4(b+4)=﹣4,∴b=﹣3,∴A(﹣4,1);(3)如图2中,由(2)可知A(﹣4,1),M(0,4),∴AM==5,当菱形以AM为边时,AQ=AQ′=5,AQ∥OM,可得Q(﹣4,﹣4),Q′(﹣4,6),当A,Q关于y轴对称时,也满足条件,此时Q(4,1),当AM为菱形的对角线时,设P″(0,b),则有(4﹣b)2=42+(b﹣1)2,∴b=﹣.∴AQ″=MP″=,∴Q″(﹣4,),综上所述,满足条件的点Q坐标为(﹣4,﹣4)或(﹣4,6)或(﹣4,)或(4,1).【点睛】本题主要考查反比例函数与一次函数的综合以及菱形的性质定理,根据题意添加辅助线画出图形,数形结合,式是解题的关键.24、(1)11,10,78,81;(2)90人;(3)八年级的总体水平较好【解析】(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.【详解】解:(1)由题意知,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,1,79,79,80,80,81,83,85,86,87,94,∴其中位数,八年级成绩的众数,故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数,∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).【点睛】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.25、(1)y=;(2)当t=时,d有最大值,最大值为2;(3)在抛物线上存在三个点:E1(,-),E2(,),E3(-,),使以O、A、E、F为顶点的四边形为平行四边形.【解析】(1)在Rt△ABC中,根据∠BAC的正切函数可求得AC=1,再根据勾股定理求得AB,设OC=m,连接OH由对称性知,OH=OC=m,BH=BC=3,∠BHO=∠BCO=90°,即得AH=AB-BH=2,OA=1-m.在Rt△AOH中,根据勾股定理可求得m的值,即可得到点O、A、B的坐标,根据抛物线的对称性可设过A、B、O三点的抛物线的解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024综合岗位劳动协议模板版B版
- 2024年版城市出租车租赁协议样式版B版
- 2025年消防安全管理咨询及标准制定合同2篇
- 2024-2025学年高中历史第七单元复杂多样的当代世界第24课两极对峙格局的形成学案含解析岳麓版必修1
- 2024-2025学年高中语文课时分层作业4归去来兮辞并序含解析新人教版必修5
- 二零二四年度时尚传媒广告投放及制作合同
- 2025年度道路照明灯具批发合同范本3篇
- 2025年酒店客房销售渠道建设与维护合同3篇
- 2025年度绿色生态农业种植承包合同范本3篇
- 2025年蔬菜种植户与农产品电商平台合作合同范本3篇
- 2024年桂林中考物理试卷
- DL∕T 5362-2018 水工沥青混凝土试验规程
- (正式版)JC∕T 60023-2024 石膏条板应用技术规程
- DL-T5054-2016火力发电厂汽水管道设计规范
- (权变)领导行为理论
- 2024届上海市浦东新区高三二模英语卷
- 家用电器可靠性与寿命预测研究
- 中考语文二轮复习:诗歌鉴赏系列之边塞军旅诗(知识点+方法+习题)
- 2024年智慧工地相关知识考试试题及答案
- 五年级上册脱式计算练习300题及答案
- 健康产业园策划方案
评论
0/150
提交评论