2024届山东省菏泽市鄄城县九年级数学第一学期期末教学质量检测模拟试题含解析_第1页
2024届山东省菏泽市鄄城县九年级数学第一学期期末教学质量检测模拟试题含解析_第2页
2024届山东省菏泽市鄄城县九年级数学第一学期期末教学质量检测模拟试题含解析_第3页
2024届山东省菏泽市鄄城县九年级数学第一学期期末教学质量检测模拟试题含解析_第4页
2024届山东省菏泽市鄄城县九年级数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省菏泽市鄄城县九年级数学第一学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.二次函数y=﹣x2+2mx(m为常数),当0≤x≤1时,函数值y的最大值为4,则m的值是()A.±2 B.2 C.±2.5 D.2.52.下图中几何体的左视图是()A. B. C. D.3.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣24.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31° B.28° C.62° D.56°5.若一元二次方程x2+2x+m=0中的b2﹣4ac=0,则这个方程的两根为()A.x1=1,x2=﹣1 B.x1=x2=1 C.x1=x2=﹣1 D.不确定6.赵州桥的桥拱可以用抛物线的一部分表示,函数关系为,当水面宽度AB为20m时,水面与桥拱顶的高度DO等于()A.2m B.4m C.10m D.16m7.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30° B.45°C.60° C.90°8.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的中位数是()A.2 B.3 C.4 D.59.如图,点I是△ABC的内心,∠BIC=130°,则∠BAC=()A.60° B.65° C.70° D.80°10.有三张正面分别标有数字-2,3,4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A. B. C. D.二、填空题(每小题3分,共24分)11.某班级准备举办“迎鼠年,闹新春”的民俗知识竞答活动,计划A、B两组对抗赛方式进行,实际报名后,A组有男生3人,女生2人,B组有男生1人,女生4人,若从两组中各随机抽取1人,则抽取到的两人刚好是1男1女的概率是__________.12.如图,原点O为平行四边形A.BCD的对角线A.C的中点,顶点A,B,C,D的坐标分别为(4,2),(,b),(m,n),(-3,2).则(m+n)(+b)=__________.13.的半径为4,圆心到直线的距离为2,则直线与的位置关系是______.14.已知关于的方程有两个不相等的实数根,则的取值范围是__________.15.若关于x的一元二次方程有实数根,则m的取值范围是___________.16.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.17.某物体对地面的压强P(Pa)与物体和地面的接触面积S(m2)成反比例函数关系(如图),当该物体与地面的接触面积为0.25m2时,该物体对地面的压强是______Pa.18.已知:如图,在平面上将绕点旋转到的位置时,,则为__________度.三、解答题(共66分)19.(10分)如图,一次函数的图象与反比例函数图象交于A(-2,1),B(1,n)两点.(1)求m,n的值;(2)当一次函数的值大于反比例函数的值时,请写出自变量x的取值范围.20.(6分)在一次篮球拓展课上,,,三人玩篮球传球游戏,游戏规则是:每一次传球由三人中的一位将球随机地传给另外两人中的某一人.例如:第一次由传球,则将球随机地传给,两人中的某一人.(1)若第一次由传球,求两次传球后,球恰好回到手中的概率.(要求用画树状图法或列表法)(2)从,,三人中随机选择一人开始进行传球,求两次传球后,球恰好在手中的概率.(要求用画树状图法或列表法)21.(6分)某商场经销-种进价为每千克50元的水产品,据市场分析,每千克售价为60元时,月销售量为,销售单价每涨1元时,月销售量就减少,针对这种情况,请解答以下问题:(1)当销售单价定为65元时,计算销售量和月销售利润;(2)若想在月销售成本不超过12000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?22.(8分)如图所示,是某路灯在铅垂面内的示意图,灯柱的高为10米,灯柱与灯杆的夹角为.路灯采用锥形灯罩,在地面上的照射区域的长为13.3米,从,两处测得路灯的仰角分别为和,且.求灯杆的长度.23.(8分)已知关于的方程(1)求证:无论为何值,方程总有实数根.(2)设,是方程的两个根,记,S的值能为2吗?若能,求出此时的值;若不能,请说明理由.24.(8分)如图,已知直线交于,两点;是的直径,点为上一点,且平分,过作,垂足为.(1)求证:为的切线;(2)若,的直径为10,求的长.25.(10分)如图,是半径为1的的内接正十边形,平分(1)求证:;(2)求证:26.(10分)一次函数与反比例函数的图象相交于A(﹣1,4),B(2,n)两点,直线AB交x轴于点D.(1)求一次函数与反比例函数的表达式;(2)过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S.

参考答案一、选择题(每小题3分,共30分)1、D【解析】分m≤0、m≥1和0≤m≤1三种情况,根据y的最大值为4,结合二次函数的性质求解可得.【详解】y=﹣x2+2mx=﹣(x﹣m)2+m2(m为常数),①若m≤0,当x=0时,y=﹣(0﹣m)2+m2=4,m不存在,②若m≥1,当x=1时,y=﹣(1﹣m)2+m2=4,解得:m=2.5;③若0≤m≤1,当x=m时,y=m2=4,即:m2=4,解得:m=2或m=﹣2,∵0≤m≤1,∴m=﹣2或2都舍去,故选:D.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据题意分三种情况讨论.2、D【分析】根据左视图是从左面看到的图形,即可.【详解】从左面看从左往右的正方形个数分别为1,2,故选D.【点睛】本题主要考查几何体的三视图,理解左视图是从左面看到的图形,是解题的关键.3、A【解析】试题分析:由题意知抛物线y=x2+2x+m﹣1与x轴有两个交点,所以△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故答案选A.考点:抛物线与x轴的交点.4、D【解析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5、C【分析】根据求出m的值,再把求得的m的值代回原方程,然后解一元二次方程即可求出方程的两个根.【详解】解:∵△=b2﹣4ac=0,∴4﹣4m=0,解得:m=1,∴原方程可化为:x2+2x+1=0,∴(x+1)2=0,∴x1=x2=﹣1.故选C.【点睛】本题考查了一元二次方程根的判别式和一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.6、B【分析】根据题意,水面宽度AB为20则B点的横坐标为10,利用B点是函数为图象上的点即可求解y的值即DO【详解】根据题意B的横坐标为10,把x=10代入,得y=﹣4,∴A(﹣10,﹣4),B(10,﹣4),即水面与桥拱顶的高度DO等于4m.故选B.【点睛】本题考查了点的坐标及二次函数的实际应用.7、C【分析】根据弧长公式,即可求解【详解】设圆心角是n度,根据题意得,解得:n=1.故选C【点睛】本题考查了弧长的有关计算.8、B【分析】根据题意由有唯一的众数4,可知x=4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x=4,∵将数据从小到大排列为:1,2,1,1,4,4,4,∴中位数为:1.故选B.【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.9、D【分析】根据三角形的内接圆得到∠ABC=2∠IBC,∠ACB=2∠ICB,根据三角形的内角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度数即可;【详解】解:∵点I是△ABC的内心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故选D.【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.10、C【详解】画树状图得:

∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,

∴两次抽取的卡片上的数字之积为正偶数的概率是:.故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.二、填空题(每小题3分,共24分)11、【分析】利用列表法把所有情况列出来,再用概率公式求解即可.【详解】列表如下根据表格可知共有25种可能的情况出现,其中抽取到的两人刚好是1男1女的有14种情况∴抽取到的两人刚好是1男1女的概率是故答案为:.【点睛】本题考查了概率的问题,掌握列表法和概率公式是解题的关键.12、-6【分析】易知点A与点C关于原点O中心对称,由平行四边形的性质可知点B和点D关于原点O对称,根据关于原点对称横纵坐标都互为相反数可得点B、点C坐标,求解即可.【详解】解:根据题意得点A与点C关于原点O中心对称,点B和点D关于原点O对称故答案为:【点睛】本题考查了平面直角坐标系中的中心对称,正确理解题意是解题的关键.13、相交【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,

∵4>2,即:d<r,

∴直线L与⊙O的位置关系是相交.

故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.14、且【分析】根据根的判别式和一元一次方程的定义得到关于的不等式,求出的取值即可.【详解】关于的一元二次方程有两个不相等的实数根,∵,∴且,

解得:且,

故答案为:且.【点睛】本题考查了根的判别式和一元二次方程的定义,能根据题意得出关于的不等式是解此题的关键.15、【分析】根据根的判别式可得方程有实数根则,然后列出不等式计算即可.【详解】根据题意得:解得:故答案为:【点睛】本题考查的是一元二次方程的根的判别式,根据一元二次方程的根的情况确定与0的关系是关键.16、1【解析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.【详解】设四边形BCED的面积为x,则S△ADE=12﹣x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,则=,即,解得:x=1,即四边形BCED的面积为1,故答案为1.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.17、1【分析】直接利用函数图象得出函数解析式,进而求出答案.【详解】设P=,把(0.5,2000)代入得:k=1000,故P=,当S=0.25时,P==1(Pa).故答案为:1.【点睛】此题主要考查了反比例函数的应用,正确求出函数解析会死是解题关键.18、1【分析】结合旋转前后的两个图形全等的性质以及平行线的性质,进行计算.【详解】解:∵AA′∥BC,

∴∠A′AB=∠ABC=65°.

∵BA′=AB,

∴∠BA′A=∠BAA′=65°,

∴∠ABA′=1°,

又∵∠A′BA+∠ABC'=∠CBC'+∠ABC',

∴∠CBC′=∠ABA′=1°.

故答案为:1.【点睛】本题考查旋转的性质以及平行线的性质.解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.三、解答题(共66分)19、(1)m=-2,n=-2;(2)或.【解析】(1)把A(-2,1)代入反比例函数y=,求出m的值即可;把B(1,n)代入反比例函数的解析式可求出n;(2)观察函数图象得到当x<-2或0<x<1时,一次函数的图象都在反比例函数的图象的上方,即一次函数的值大于反比例函数的值.【详解】(1)解:∵点A(-2,1)在反比例函数的图象上,∴.∴反比例函数的表达式为.∵点B(1,n)在反比例函数的图象上,∴.(2)观察函数图象可知,自变量取值范围是:或.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标同时满足两个函数解析式;利用待定系数法求函数的解析式.也考查了观察函数图象的能力.20、(1),树状图见解析;(2),树状图见解析【分析】(1)用树状图表示所有可能情况,找出符合条件的情况,求出概率即可.(2)用树状图表示所有可能情况,找出符合条件的情况,求出概率即可.【详解】解:(1)画树状图得:∵共有4种等可能的结果,两次传球后,球恰在手中的只有2种情况,∴两次传球后,球恰在手中的概率为.(2)根据题意画树状图如下:∴共有12种等可能的结果,第二次传球后,球恰好在手中的有4种情况,∴第二次传球后,球恰好在手中的概率是.【分析】本题主要考查了树状图求概率的方法,正确掌握树状图求概率的方法是解题的关键.21、(1)销售量:450kg;月销售利润:6750元;(2)销售单价定为90元时,月销售利润达到8000元,且销售成本不超过12000元【分析】(1)利用每千克水产品的销售利润×月销售量=月销售利润列出函数即可;(2)由函数值为8000,列出一元二次方程解决问题.【详解】解:(1)销售量:,月销售利润:(元);(2)因为月销售成本不超过12000元,∴月销售数量不超过;设销售定价为元,由题意得:,解得;当时,月销售量为,满足题意;当时,月销售量为,不合题意,应舍去.∴销售单价定为90元时,月销售利润达到8000元,且销售成本不超过12000元.【点睛】此题考查了一元二次方程的应用,利用基本数量关系:每千克水产品的销售利润×月销售量=月销售利润列函数解析式,用配方法求最大值以及函数与方程的关系.22、2.8米【分析】过点作,交于点,过点作,交于点,则米.设.根据正切函数关系得,可进一步求解.【详解】解:由题意得,.过点作,交于点,过点作,交于点,则米.设.,.在中,,.,..(米).,.(米).答:灯杆的长度为2.8米.【点睛】考核知识点:解直角三角形应用.构造直角三角形,利用直角三角形性质求解是关键.23、(1)见解析;(2)时,S的值为2【解析】(1)分两种情况讨论:①当k=1时,方程是一元一次方程,有实数根;②当k≠1时,方程是一元二次方程,所以证明判别式是非负数即可;

(2)由韦达定理得,代入到中,可求得k的值.【详解】解:(1)①当,即k=1时,方程为一元一次方程,∴是方程的一个解.②当时,时,方程为一元二次方程,则,∴方程有两不相等的实数根.综合①②得,无论k为何值,方程总有实数根.(2)S的值能为2,根据根与系数的关系可得∴,即,解得,∵方程有两个根,∴∴应舍去,∴时,S的值为2【点睛】本题考查了根与系数的关系及根的判别式,熟练掌握,是解题的关键.24、(1)连结OC,证明见详解,(2)AB=1.【分析】(1)连接OC,根据题意可证得∠CAD+∠DCA=30°,再根据角平分线的性质,得∠DCO=30°,则CD为⊙O的切线;(2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=30°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5-x)2+(1-x)2=25,从而求得x的值,由勾股定理得出AB的长.【详解】(1)连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=30°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=1,设AD=x,则OF=CD=1-x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5-x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5-x)2+(1-x)2=25,化简得x2-11x+18=0,解得x1=2,x2=3.∵CD=1-x大于0,故x=3舍去,∴x=2,从而AD=2,AF=5-2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=1.【点睛】本题考查切线的证法与弦长问题,涉及切线的判定和性质;.勾股定理;矩形的判定和性质以及垂径定理的知识,关键掌握好这些知识并灵活运用解决问题.25、(1)详见解析;(2)详见解析【分析】(1)根据题意得出角相等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论