版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省滨州沾化区六校联考数学九年级第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如下图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB与△CDE对应边的比为k,则位似中心的坐标和k的值分别为()A. B. C. D.2.方程组的解的个数为()A.1 B.2 C.3 D.43.关于反比例函数y=,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上4.若关于x的一元二次方程kx2+2x–1=0有实数根,则实数k的取值范围是A.k≥–1 B.k>–1C.k≥–1且k≠0 D.k>–1且k≠05.已知,,且的面积为,周长是的周长的,,则边上的高等于()A. B. C. D.6.如图,这个几何体的左视图是()A. B. C. D.7.在1、2、3三个数中任取两个,组成一个两位数,则组成的两位数是奇数的概率为()A. B. C. D.8.如图,和都是等腰直角三角形,,,的顶点在的斜边上,、交于,若,,则的长为()A. B. C. D.9.在Rt△ABC中,∠C=90°,AC=5,BC=12,则cosB的值为()A. B. C. D.10.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A. B. C. D.11.如图,现有两个相同的转盘,其中一个分为红、黄两个相等的区域,另一个分为红、黄、蓝三个相等的区域,随即转动两个转盘,转盘停止后指针指向相同颜色的概率为()A. B. C. D.12.如图是某个几何体的三视图,则该几何体是(
)A.长方体 B.圆锥 C.圆柱 D.三棱柱二、填空题(每题4分,共24分)13.在平面直角坐标系中,正方形ABCD的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作正方形,延长交轴于点,作正方形,…按这样的规律进行下去,第个正方形的面积为_____________.14.底角相等的两个等腰三角形_________相似.(填“一定”或“不一定”)15.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为_____.16.如图,四边形ABCD中,AB∥CD,∠C=90°,AB=1,CD=2,BC=3,点P为BC边上一动点,若AP⊥DP,则BP的长为_____.17.如图,在中,,,点是边的中点,点是边上一个动点,当__________时,相似.18.已知关于的一元二次方程有两个相等的实数根,则的值是__________.三、解答题(共78分)19.(8分)如图,已知AB是⊙O的直径,AC为弦,且平分∠BAD,AD⊥CD,垂足为D.(1)求证:CD是⊙O的切线;(2)若⊙O的直径为4,AD=3,试求∠BAC的度数.20.(8分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为,对角线AE,DF相交于点O,连接OC.求OC的长度.21.(8分)已知:△ABC中,点D为边BC上一点,点E在边AC上,且∠ADE=∠B(1)如图1,若AB=AC,求证:;(2)如图2,若AD=AE,求证:;(3)在(2)的条件下,若∠DAC=90°,且CE=4,tan∠BAD=,则AB=____________.22.(10分)如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的面积.(结果保留π)23.(10分)如图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象(如图):(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式:(2)求出所输出的y的值中最小一个数值;(3)写出当x满足什么范围时,输出的y的值满足3≤y≤1.24.(10分)如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.25.(12分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=5,AB=8,求的值.26.已知抛物线y=kx2+(1﹣2k)x+1﹣3k与x轴有两个不同的交点A、B.(1)求k的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点M,并求出点M的坐标;(3)当<k≤8时,由(2)求出的点M和点A,B构成的△ABM的面积是否有最值?若有,求出该最值及相对应的k值.
参考答案一、选择题(每题4分,共48分)1、C【解析】两对对应点的连线的交点即为位似中心,连接OD、AC,交点为(2,2,)即位似中心为(2,2,);k=OA:CD=6:3=2,故选C.2、A【分析】分类讨论x与y的正负,利用绝对值的代数意义化简,求出方程组的解,即可做出判断.【详解】解:根据x、y的正负分4种情况讨论:①当x>0,y>0时,方程组变形得:,无解;②当x>0,y<0时,方程组变形得:,解得x=3,y=2>0,则方程组无解;③当x<0,y>0时,方程组变形得:,此时方程组的解为;④当x<0,y<0时,方程组变形得:,无解,综上所述,方程组的解个数是1.故选:A.【点睛】本题考查了解二元一次方程组,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键.3、C【分析】根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.4、C【解析】解:∵一元二次方程kx2﹣2x﹣1=1有两个实数根,∴△=b2﹣4ac=4+4k≥1,且k≠1,解得:k≥﹣1且k≠1.故选C.点睛:此题考查了一元二次方程根的判别式,根的判别式的值大于1,方程有两个不相等的实数根;根的判别式的值等于1,方程有两个相等的实数根;根的判别式的值小于1,方程没有实数根.5、B【分析】根据相似三角形的周长比等于相似比可得两个三角形的相似比,根据相似三角形的面积比等于相似比的平方可求出△ABC的面积,进而可求出AB边上的高.【详解】∵,周长是的周长的,∴与的相似比为,∴,∵S△A′B′C′=,∴S△ABC=24,∵AB=8,∴AB边上的高==6,故选:B.【点睛】本题考查相似三角形的性质,相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方;熟练掌握相关性质是解题关键.6、B【解析】根据三视图概念即可解题.【详解】解:因为物体的左侧高,所以会将右侧图形完全遮挡,看不见的直线要用虚线代替,故选B.【点睛】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.7、C【分析】列举出所有情况,看末位是1和3的情况占所有情况的多少即可.【详解】依题意画树状图:∴共有6种情况,是奇数的有4种情况,所以组成的两位数是偶数的概率=,故选:C.【点睛】本题考查了树状图法求概率以及概率公式;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是不放回实验.8、B【分析】连接BD,自F点分别作,交AD、BD于G、H点,通过证明,可得,根据勾股定理求出AB的长度,再根据角平分线的性质可得,根据三角形面积公式可得,代入中即可求出BF的值.【详解】如图,连接BD,自F点分别作,交AD、BD于G、H点∵和都是等腰直角三角形∴在△ECA和△DCB中在Rt△ADB中,∴DF是∠ADB的角平分线∵△ADF底边AF上的高h与△BDF底边BF上的高h相同故答案为:B.【点睛】本题考查了三角形的综合问题,掌握等腰直角三角形的性质、全等三角形的性质以及判定定理、勾股定理、角平分线的性质、三角形面积公式是解题的关键.9、B【分析】根据勾股定理求出AB,根据余弦的定义计算即可.【详解】由勾股定理得,,则,故选:B.【点睛】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.10、C【解析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴阴影部分的面积=,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.11、A【解析】先画树状图展示所有6种等可能的结果数,找出停止后指针指向相同颜色的结果数,然后根据概率公式计算.【详解】画树状图如下:由树状图知,共有6种等可能结果,其中转盘停止后指针指向相同颜色的有2种结果,所以转盘停止后指针指向相同颜色的概率为=,故选:A.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.12、B【分析】根据几何体的三视图,可判断出几何体.【详解】解:∵主视图和左视图是等腰三角形∴此几何体是锥体∵俯视图是圆形∴这个几何体是圆锥故选B.【点睛】此题主要考查了几何体的三视图,关键是利用主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.二、填空题(每题4分,共24分)13、【分析】推出AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,求出∠ADO=∠BAA1,证△DOA∽△ABA1,得出,求出AB,BA1,求出边长A1C=,求出面积即可;求出第2个正方形的边长是,求出面积,再求出第3个正方形的面积;依此类推得出第n个正方形的边长,求出面积即可.【详解】∵四边形ABCD是正方形,
∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,
∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°,
∴∠ADO=∠BAA1,
∵∠DOA=∠ABA1,
∴△DOA∽△ABA1,
∴,
∵AB=AD=∴BA1=∴第2个正方形A1B1C1C的边长A1C=A1B+BC=,面积是;同理第3个正方形的边长是面积是;第4个正方形的边长是,面积是…,
第n个正方形的边长是,面积是故答案为:【点睛】本题考查了正方形的性质,相似三角形的性质和判定,勾股定理的应用,解此题的关键是根据计算的结果得出规律,题目比较好,但是一道比较容易出错的题目14、一定【分析】根据等腰三角形的性质得到∠B=∠C,∠E=∠F,根据相似三角形的判定定理证明.【详解】如图:∵AB=AC,DE=EF,∴∠B=∠C,∠E=∠F,∵∠B=∠E,∴∠B=∠C=∠E=∠F,∴△ABC∽△DEF,故答案为一定.【点睛】本题考查的是相似三角形的判定、等腰三角形的性质,掌握两组角对应相等的两个三角形相似是解题的关键.15、6+π.【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O作两边的垂线,垂足分别为D,E,连接AO,则Rt△ADO中,∠OAD=30°,OD=1,AD=,∴S△ADO=OD•AD=,∴S四边形ADOE=2S△ADO=,∵∠DOE=120°,∴S扇形DOE=,∴纸片不能接触到的部分面积为:3(﹣)=3﹣π∵S△ABC=×6×3=9∴纸片能接触到的最大面积为:9﹣3+π=6+π.故答案为6+π.【点睛】此题主要考查圆的综合运用,解题的关键是熟知等边三角形的性质、扇形面积公式.16、1或2【分析】设BP=x,则PC=3-x,根据平行线的性质可得∠B=90°,根据同角的余角相等可得∠CDP=∠APB,即可证明△CDP∽△BPA,根据相似三角形的性质列方程求出x的值即可得答案.【详解】设BP=x,则PC=3-x,∵AB∥CD,∠C=90°,∴∠B=180°-∠C=90°,∴∠B=∠C,∵AP⊥DP,∴∠APB+∠DPC=90°,∵∠CDP+∠DPC=90°,∴∠CDP=∠APB,∴△CDP∽△BPA,∴,∵AB=1,CD=2,BC=3,∴,解得:x1=1,x2=2,∴BP的长为1或2,故答案为:1或2【点睛】此题考查的是相似三角形的判定及性质,掌握相似三角形的对应边成比例列方程是解题的关键.17、【分析】直接利用,找到对应边的关系,即可得出答案.【详解】解:当时,
则,
∵,点是边的中点,
∴∵,∴则综上所述:当BQ=时,.
故答案为:.【点睛】此题主要考查了相似三角形的性质,得到对应边成比例是解答此题的关键.18、【解析】根据方程有两个相等的实数根,可得b2-4ac=0,方程化为一般形式后代入求解即可.【详解】原方程化为一般形式为:mx2+(2m+1)x=0,∵方程有两个相等的实数根∴(2m+1)2-4m×0=0【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式,本题属于基础题型.三、解答题(共78分)19、(1)证明见解析;(2)30°.【解析】(1)连接OC,证先利用角平分线的定义和等腰三角形的性质证明∠OCA=∠DAC,从而OC∥AD,由平行线的性质可得OC⊥CD,从而得出CD是⊙O切线;(2)连接BC,证明△ACB∽△ADC,求出AC的长度,再求出∠BAC的余弦,得出∠BAC的度数.【详解】解:(1)连结OC.∵平分,∴∠BAC=∠DAC.又OA=OC,∴∠BAC=∠OCA,∴∠OCA=∠DAC,∴OC∥AD.∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线.(2)连结BC.∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠ADC=90°.又∠BAC=∠DAC,∴△ACB∽△ADC.∴,,,∴AC=.在Rt△ACB中,cos∠BAC=,∴∠BAC=30°.【点睛】本题主要考查了等腰三角形的性质,平行线的判定与性质,圆的切线的判定及锐角三角函数的知识.连接半径是证明切线的一种常用辅助线的做法,求角的度数可以借助于三角函数.20、(1)证明见解析;(1)CF﹣CD=BC;(3)①CD﹣CF=BC;②1.【分析】(1)三角形ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得.(1)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC.(3)①同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CD﹣CB=CF.②证明△BAD≌△CAF,△FCD是直角三角形,然后根据正方形的性质即可求得DF的长,则OC即可求得.【详解】解:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°.∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF.∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS).∴BD=CF.∵BD+CD=BC,∴CF+CD=BC.(1)CF-CD=BC;
理由:∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四边形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,
∴∠BAD=∠CAF,
∵在△BAD和△CAF中,,
∴△BAD≌△CAF(SAS)
∴BD=CF
∴BC+CD=CF,
∴CF-CD=BC;
(3)①∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四边形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,
∴∠BAD=∠CAF,
∵在△BAD和△CAF中,,
∴△BAD≌△CAF(SAS),
∴BD=CF,
∴CD-BC=CF,②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°.∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF.∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS).∴∠ACF=∠ABD.∵∠ABC=45°,∴∠ABD=135°.∴∠ACF=∠ABD=135°.∴∠FCD=90°.∴△FCD是直角三角形.∵正方形ADEF的边长为且对角线AE、DF相交于点O,∴DF=AD=4,O为DF中点.∴OC=DF=1.21、【解析】分析:(1)∠ADE=∠B,可得根据等边对等角得到△BAD∽△CDE,根据相似三角形的性质即可证明.(2)在线段AB上截取DB=DF,证明△AFD∽△DEC,根据相似三角形的性质即可证明.(3)过点E作EF⊥BC于F,根据tan∠BAD=tan∠EDF=,设EF=x,DF=2x,则DE=,证明△EDC∽△GEC,求得,根据CE2=CD·CG,求出CD=,根据△BAD∽△GDE,即可求出的长度.详解:(1)∠ADE=∠B,可得∵△BAD∽△CDE,∴;(2)在线段AB上截取DB=DF∴∠B=∠DFB=∠ADE∵AD=AE∴∠ADE=∠AED∴∠AED=∠DFB,同理:∵∠BAD+∠BDA=180°-∠B,∠BDA+∠CDE=180°-∠ADE∴∠BAD=∠CDE∵∠AFD=180°-∠DFB,∠DEC=180°-∠AED∴∠AFD=∠DEC,∴△AFD∽△DEC,∴(3)过点E作EF⊥BC于F∵∠ADE=∠B=45°∴∠BDA+∠BAD=135°,∠BDA+∠EDC=135°∴∠BAD=∠EBC(三等角模型中,这个始终存在)∵tan∠BAD=tan∠EDF=∴设EF=x,DF=2x,则DE=,在DC上取一点G,使∠EGD=45°,∴△BAD∽△GDE,∵AD=AE∴∠AED=∠ADE=45°,∵∠AED=∠EDC+∠C=45°,∠C+∠CEG=45°,∴∠EDC=∠GEC,∴△EDC∽△GEC,∴∴,又CE2=CD·CG,∴42=CD·,CD=,∴,解得∵△BAD∽△GDE∴,∴.点睛:属于相似三角形的综合题,考查相似三角形的判定于性质,掌握相似三角形的判定方法是解题的关键.22、(1)见解析;(2)169π(cm2).【分析】(1)根据垂径定理,即可得=,根据同弧所对的圆周角相等,证出∠BAC=∠BCD,再根据等边对等角,即可得到∠BAC=∠ACO,从而证出∠ACO=∠BCD;(2)根据垂径定理和勾股定理列出方程,求出圆的半径,即可求出圆的面积.【详解】解:(1)∵AB为⊙O的直径,AB⊥CD,∴=.∴∠BAC=∠BCD.∵OA=OC,∴∠BAC=∠ACO.∴∠ACO=∠BCD;(2)∵AB为⊙O的直径,AB⊥CD,∴CE=CD=×24=12(cm).在Rt△COE中,设CO为r,则OE=r﹣8,根据勾股定理得:122+(r﹣8)2=r2解得r=1.∴S⊙O=π×12=169π(cm2).【点睛】此题考查的是垂径定理、等腰三角形的性质、圆周角定理推论和求圆的面积,掌握垂径定理和勾股定理的结合是解决此题的关键.23、(1)当时,y=x+3;当时y=(x-1)2+2(2)最小值2(3)0≤x≤5或7≤x≤2【解析】(1)当0≤x≤4时,函数关系式为y=x+3;当x>4时,函数关系式为y=(x﹣1)2+2;(2)根据一次函数与二次函数的性质,分别求出自变量在其取值范围内的最小值,然后比较即可;(3)由题意,可得不等式和,解答出x的值即可.【详解】解:(1)由图可知,当0≤x≤4时,y=x+3;当x>4时,y=(x﹣1)2+2;(2)当0≤x≤4时,y=x+3,此时y随x的增大而增大,∴当x=0时,y=x+3有最小值,为y=3;当x>4时,y=(x﹣1)2+2,y在顶点处取最小值,即当x=1时,y=(x﹣1)2+2的最小值为y=2;∴所输出的y的值中最小一个数值为2;(3)由题意得,当0≤x≤4时,解得,0≤x≤4;当x>4时,,解得,4≤x≤5或7≤x≤2;综上,x的取值范围是:0≤x≤5或7≤x≤2.24、(1)抛物线的解析式为y=﹣x2+2x+3,直线AB的解析式为y=﹣x+3;(2)t=或;(3)存在面积最大,最大值是,此时点P(,).【分析】(1)将A(3,0),B(0,3)两点代入y=﹣x2+bx+c,求出b及c即可得到抛物线的解析式,设直线AB的解析式为y=kx+n,将A、B两点坐标代入即可求出解析式;(2)由题意得OE=t,AF=t,AE=OA﹣OE=3﹣t,分两种情况:①若∠AEF=∠AOB=90°时,证明△AOB∽△AEF得到=,求出t值;②若∠AFE∠AOB=90°时,证明△AOB∽△AFE,得到=求出t的值;(3)如图,存在,连接OP,设点P的坐标为(x,﹣x2+2x+3),根据,得到,由此得到当x=时△ABP的面积有最大值,最大值是,并求出点P的坐标.【详解】(1)∵抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点,∴,解得,∴抛物线的解析式为y=﹣x2+2x+3,设直线AB的解析式为y=kx+n,∴,解得,∴直线AB的解析式为y=﹣x+3;(2)由题意得,OE=t,AF=t,∴AE=OA﹣OE=3﹣t,∵△AEF为直角三角形,∴①若∠AEF=∠AOB=90°时,∵∠BAO=∠EAF,∴△AOB∽△AEF∴=,∴,∴t=.②若∠AFE∠AOB=90°时,∵∠BAO=∠EAF,∴△AOB∽△AFE,∴=,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省泸州市泸州高级中学校2024-2025学年七年级上学期1月期末历史试卷(含答案)
- 湖北省部分重点中学2024-2025学年高三上学期第二次联考(期末)地理试卷(含答案)
- 睡眠医学中心:精准医疗引领健康睡眠未来趋势 头豹词条报告系列
- 2025年度不动产房产证购房合同附带车位使用权转让协议3篇
- 2024版多功能办公设备采购合同6篇
- 2024荒田承包合同范本
- 福建省南平市建阳县徐市中学高二数学理上学期期末试卷含解析
- 2025年EPS节能建筑项目施工安全管理合同3篇
- 2024薪资协议书-文化创意产业创作者模板2篇
- 2024版幕墙施工合同范文
- 广东省潮州市2023-2024学年高二上学期期末考试 数学 含解析
- 老年缓和医疗
- 医疗质量提高
- 2024年保安员资格考试题目及答案(共60题)
- 急性胰腺炎的急救处理与家庭护理要点课件
- 糖尿病伴消化系统疾病饮食
- 2023年机械员之机械员专业管理实务题库及参考答案(a卷)
- 班组安全培训试题含完整答案(各地真题)
- 《论语》中的人生智慧与自我管理学习通超星期末考试答案章节答案2024年
- 2022版义务教育物理课程标准
- 期末测试-2024-2025学年语文四年级上册统编版
评论
0/150
提交评论