2024届江苏省吴江青云中学数学九上期末经典模拟试题含解析_第1页
2024届江苏省吴江青云中学数学九上期末经典模拟试题含解析_第2页
2024届江苏省吴江青云中学数学九上期末经典模拟试题含解析_第3页
2024届江苏省吴江青云中学数学九上期末经典模拟试题含解析_第4页
2024届江苏省吴江青云中学数学九上期末经典模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省吴江青云中学数学九上期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.函数y=(x+1)2-2的最小值是()A.1 B.-1 C.2 D.-22.下列四个结论,①过三点可以作一个圆;②圆内接四边形对角相等;③平分弦的直径垂直于弦;④相等的圆周角所对的弧也相等;不正确的是()A.②③ B.①③④ C.①②④ D.①②③④3.若双曲线的图象的一支位于第三象限,则k的取值范围是()A.k<1 B.k>1 C.0<k<1 D.k≤14.如图,四边形ABCD内接于⊙O,AB是直径,OD∥BC,∠ABC=40°,则∠BCD的度数为()A.80° B.90° C.100° D.110°5.点M(2,-3)关于原点对称的点N的坐标是:()A.(-2,-3) B.(-2,3) C.(2,3) D.(-3,2)6.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则△PQD的面积为()A. B. C. D.7.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.28.下列成语所描述的事件是必然事件的是()A.水涨船高 B.水中捞月 C.一箭双雕 D.拔苗助长9.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径,AC=2,则cosB的值是()A.B.C.D.10.如图,二次函数的图象与轴正半轴相交于A、B两点,与轴相交于点C,对称轴为直线且OA=OC,则下列结论:①②③④关于的方程有一个根为其中正确的结论个数有()A.1个 B.2个 C.3个 D.4个11.如图,中,中线AD,BE相交于点F,,交于AD于点G,下列说法①;②;③与面积相等;④与四边形DCEF面积相等.结论正确的是()A.①③④ B.②③④ C.①②③ D.①②④12.一元二次方程的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.不能确定二、填空题(每题4分,共24分)13.若关于的一元二次方程的一个根是,则的值是_________.14.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.15.已知线段a=4,b=9,则a,b的比例中项线段长等于________.16.如图,菱形的边长为4,,E为的中点,在对角线上存在一点,使的周长最小,则的周长的最小值为__________.17.如图,点在双曲线上,且轴于,若的面积为,则的值为__________.18.在比例尺为1:1000000的地图上,量得甲、乙两地的距离是2.6cm,则甲、乙两地的实际距离为_______千米.三、解答题(共78分)19.(8分)一元二次方程的一个根为,求的值及方程另一根.20.(8分)如图①,在中,,,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB,将线段PB绕点P按逆时针方向旋转,点B的对应点是点E,连接BE,得到.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E在直线AD上时,如图②所示.①;②连接CE,直线CE与直线AB的位置关系是.(2)请在图③中画出,使点E在直线AD的右侧,连接CE,试判断直线CE与直线AB的位置关系,并说明理由.(3)当点P在线段AD上运动时,求AE的最小值.21.(8分)如图,点E是弧BC的中点,点A在⊙O上,AE交BC于点D.(1)求证:;(2)连接OB,OC,若⊙O的半径为5,BC=8,求的面积.22.(10分)如图,AB为⊙O的直径,点C为⊙O上一点,CH⊥AB于H,∠CAB=30°.(1)如图1,求证:AH=3BH.(2)如图2,点D为AB下方⊙O上一点,点E为AD上一点,若∠BOE=∠CAD,连接BD,求证:OE=BD.(3)如图3,在(2)的条件下,连接CE,若CE⊥AD,OA=14,求BD的长.23.(10分)如图以的一边为直径作⊙,⊙与边的交点恰好为的中点,过点作⊙的切线交边于点.(1)求证:;(2)若,求的值.24.(10分)如图,在△ABC中,点E在边AB上,点G是△ABC的重心,联结AG并延长交BC于点D.(1)若,用向量、表示向量;(2)若∠B=∠ACE,AB=6,AC=2,BC=9,求EG的长.25.(12分)为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.分数段频数频率74.5~79.520.0579.5~84.5m0.284.5~89.5120.389.5~94.514n94.5~99.540.1(1)表中m=__________,n=____________;(2)请在图中补全频数直方图;(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在_________分数段内;(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.26.如图,已知AD•AC=AB•AE,∠DAE=∠BAC.求证:△DAB∽△EAC.

参考答案一、选择题(每题4分,共48分)1、D【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.2、D【分析】根据确定圆的条件、圆的内接四边形的性质、垂径定理及圆心角、弧、弦的关系定理逐一判断即可得答案.【详解】过不在同一条直线上的三点可以作一个圆,故①错误,圆的内接四边形对角互补,故②错误,平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,故③错误,在同圆或等圆中,相等的圆周角所对的弧也相等,故④错误,综上所述:不正确的结论有①②③④,故选:D.【点睛】本题考查确定圆的条件、圆的内接四边形的性质、垂径定理及圆心角、弧、弦的关系定理,熟练掌握相关性质及定理是解题关键.3、B【分析】根据反比例函数的性质解答即可.【详解】∵双曲线的图象的一支位于第三象限,∴k﹣1>0,∴k>1.故选B.【点睛】本题考查了反比例函数的图象与性质,反比例函数y(k≠0),当k>0时,图象在第一、三象限,且在每一个象限y随x的增大而减小;当k<0时,函数图象在第二、四象限,且在每一个象限y随x的增大而增大,熟练掌握反比例函数的性质是解答本题的关键.4、D【分析】根据平行线的性质求出∠AOD,根据等腰三角形的性质求出∠OAD,根据圆内接四边形的性质计算即可.【详解】∵OD∥BC,∴∠AOD=∠ABC=40°,∵OA=OD,∴∠OAD=∠ODA=70°,∵四边形ABCD内接于⊙O,∴∠BCD=180°-∠OAD=110°,故选:D.【点睛】本题考查的是圆内接四边形的性质、平行线的性质,掌握圆内接四边形的对角互补是解题的关键.5、B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.6、D【分析】由折叠的性质可得AQ=QD,AP=PD,由勾股定理可求AQ的长,由锐角三角函数分别求出AP,HQ的长,即可求解.【详解】解:过点D作DN⊥AC于N,∵点D是BC中点,∴BD=3,∵将△ABC折叠,∴AQ=QD,AP=PD,∵AB=9,BC=6,∠B=90°,∴AC=,∵sin∠C==,∴DN=,∵cos∠C=,∴CN=,∴AN=,∵PD2=PN2+DN2,∴AP2=(﹣AP)2+,∴AP=,∵QD2=DB2+QB2,∴AQ2=(9﹣AQ)2+9,∴AQ=5,∵sin∠A==,∴HQ==∵∴△PQD的面积=△APQ的面积=××=,故选:D.【点睛】本题考查了翻折变换,勾股定理,三角形面积公式,锐角三角函数,求出HQ的长是本题的关键.7、C【解析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值.【详解】∵一元二次方程mx1+mx﹣=0有两个相等实数根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,经检验m=0不合题意,则m=﹣1.故选C.【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.8、A【解析】必然事件就是一定会发生的事件,依据定义即可解决【详解】A.水涨船高是必然事件,故正确;B.水中捞月,是不可能事件,故错误;C.一箭双雕是随机事件,故错误D.拔苗助长是不可能事件,故错误故选:A【点睛】此题考查随机事件,难度不大9、B【解析】要求cosB,必须将∠B放在直角三角形中,由图可知∠D=∠B,而AD是直径,故∠ACD=90°,所以可进行等角转换,即求cosD.在Rt△ADC中,AC=2,AD=2r=3,根据勾股定理可求得,所以.10、C【解析】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由图象可知当x=3时,y>0,可判断②;由OA=OC,且OA<1,可判断③;由OA=OC,得到方程有一个根为-c,设另一根为x,则=2,解方程可得x=4+c即可判断④;从而可得出答案.【详解】由图象开口向下,可知a<0,与y轴的交点在x轴的下方,可知c<0,又对称轴方程为x=2,所以0,所以b>0,∴abc>0,故①正确;由图象可知当x=3时,y>0,∴9a+3b+c>0,故②错误;由图象可知OA<1.∵OA=OC,∴OC<1,即﹣c<1,∴c>﹣1,故③正确;∵OA=OC,∴方程有一个根为-c,设另一根为x.∵对称轴为直线x=2,∴=2,解得:x=4+c.故④正确;综上可知正确的结论有三个.故选C.【点睛】本题考查了二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.11、D【分析】为BC,AC中点,可得由于可得;可证故①正确.②由于则可证,故②正确.设,可得可判断③错,④正确.【详解】解:①∵为BC,AC中点,;故①正确.②,故②正确.③④设,故③错,④正确.【点睛】本题考查了平行线段成比例,解题的关键是掌握平行线段成比例以及面积与比值的关系.12、B【分析】根据根的判别式(),求该方程的判别式,根据结果的正负情况即可得到答案.【详解】解:根据题意得:△=22-4×1×(-1)

=4+4

=8>0,即该方程有两个不相等的实数根,

故选:B.【点睛】本题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.二、填空题(每题4分,共24分)13、1【分析】先利用一元二次方程根的定义得到a-b=﹣4,再把2019﹣a+b变形为2019﹣(a-b),然后利用整体代入的方法计算.【详解】把代入一元二次方程,得:,即:,∴,故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14、611【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=,∵当n=63时,前63行共有=2016个数字,2020﹣2016=1,∴2020在第61行左起第1个数,故答案为:61,1.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.15、1【分析】根据比例中项的定义,列出比例式即可求解.【详解】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积,

∴,即,解得,(不合题意,舍去)

故答案为:1.【点睛】此题考查了比例线段;理解比例中项的概念,注意线段不能是负数.16、+2【分析】连接DE,因为BE的长度固定,所以要使△PBE的周长最小,只需要PB+PE的长度最小即可.【详解】解:连结DE.∵BE的长度固定,∴要使△PBE的周长最小只需要PB+PE的长度最小即可,∵四边形ABCD是菱形,∴AC与BD互相垂直平分,∴P′D=P′B,∴PB+PE的最小长度为DE的长,∵菱形ABCD的边长为4,E为BC的中点,∠DAB=60°,∴△BCD是等边三角形,又∵菱形ABCD的边长为4,∴BD=4,BE=2,DE=,∴△PBE的最小周长=DE+BE=,故答案为:.【点睛】本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.17、【分析】设点A坐标为(x,y),由反比例函数的几何意义得,根据的面积为,即可求出k的值.【详解】解:设点A的坐标为:(x,y),∴,∴,∴,∵反比例函数经过第二、四象限,则,∴故答案为:.【点睛】本题考查了反比例函数的性质,以及反比例函数的几何意义,解题的关键是熟练掌握反比例函数的几何意义进行解题.18、1【解析】根据比例尺=图上距离:实际距离.根据比例尺关系即可直接得出实际的距离.【详解】根据比例尺=图上距离:实际距离,得:A,B两地的实际距离为2.6×1000000=100000(cm)=1(千米).故答案为1.【点睛】本题考查了线段的比.能够根据比例尺正确进行计算,注意单位的转换.三、解答题(共78分)19、,【分析】把x=1代入已知方程,列出关于m的新方程,通过解新方程来求m的值;由根与系数的关系来求方程的另一根.【详解】解:由题意得:,解得,当时,方程为,解得:,,∴方程的另一根.【点睛】本题考查了一元二次方程的解,根与系数的关系.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.20、(1)①50;②;(2);(3)AE的最小值.【解析】(1)①利用等腰三角形的性质即可解决问题.②证明,,推出即可.(2)如图③中,以P为圆心,PB为半径作⊙P.利用圆周角定理证明即可解决问题.(3)因为点E在射线CE上运动,点P在线段AD上运动,所以当点P运动到与点A重合时,AE的值最小,此时AE的最小值.【详解】(1)①如图②中,∵,,∴,②结论:.理由:∵,,∴,∴,∴,∵AE垂直平分线段BC,∴,∴,∵,,∴,∴,∴.故答案为50,.(2)如图③中,以P为圆心,PB为半径作⊙P.∵AD垂直平分线段BC,∴,∴,∵,∴.(3)如图④中,作于H,∵点E在射线CE上运动,点P在线段AD上运动,∴当点P运动到与点A重合时,AE的值最小,此时AE的最小值.【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,平行线的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,学会利用辅助圆解决问题,属于中考压轴题.21、(1)见解析;(2)12【分析】(1)由点E是的中点根据圆周角定理可得∠BAE=∠CBE,又由∠E=∠E(公共角),即可证得△BDE∽△ABE,然后由相似三角形的对应边成比例,证得结论.(2)过点O作OF⊥BC于点F,根据垂径定理得出BF=CF=4,再根据勾股定理得出OF的长,从而求出的面积【详解】(1)证明:∵点E是弧BC的中点∴∠BAE=∠CBE=∠DBE又∵∠E=∠E∴△AEB∽△BED∴∴(2)过点O作OF⊥BC于点F,则BF=CF=4在中,∴【点睛】此题考查了圆周角定理、垂径定理以及相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.22、(1)证明见解析;(2)证明见解析;(3)BD=2.【分析】(1)连接BC,根据直角三角形中,30度所对的直角边是斜边的一半,可得:AB=2BC,BC=2BH,可得结论;(2)由(1)得AB=2BC,AB=2OA,得OA=BC,利用ASA证明△OAE≌△BCD,可得结论;(3)过O作OM⊥AD于M,先证明∠OEA=∠BAC=30°,设OM=x,则ME=x,由△OAE≌△BCD,则∠DCE=30°,设AM=MD=y,则AE=y+x,DE=y﹣x,根据AE=2DE列等式得:y=3x,根据勾股定理列方程可得x的值,可得:BD=2OM=2.【详解】(1)证明:如图1,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=30°,∴∠ABC=60°,AB=2BC,∵CH⊥AB,∴∠BCH=30°,∴BC=2BH,∴AB=4BH,∴AH=3BH,(2)证明:连接BC、DC,∵∠CAD+∠CBD=180°,∠BOE=∠CAD,∴∠BOE+∠CBD=180°,∵∠BOE+∠AOE=180°,∴∠AOE=∠CBD,∵∠OAE,∠BCD是弧BD所对的圆周角∴∠OAE=∠BCD,由(1)得AB=2BC,AB=2OA,∴OA=BC,∴△OAE≌△BCD,∴OE=BD;(3)解:过O作OM⊥AD于M,∴AM=MD,∵AO=OB,∴BD=2OM,∵∠BOE=∠CAD,∠BOE=∠BAE+∠OEA,∠CAD=∠BAE+∠BAC,∴∠OEA=∠BAC=30°,设OM=x,则ME=x,由(2)得:△OAE≌△BCD,∴AE=CD,∵∠ADC,∠ABC是弧AC所对的圆周角,∴∠ADC=∠ABC=60°,∵CE⊥AD,∴∠DCE=30°,∴CD=2DE,AE=CD,∴AE=2DE,设AM=MD=y,则AE=y+x,DE=y﹣x,∴y+x=2(y﹣x),y=3x,在Rt△OAM中,OA=14,AM=3x,OM=x,OM2+AM2=OA2,,解得:x1=,x2=﹣(舍),∴OM=,∴BD=2OM=2.【点睛】本题主要考查圆的性质和三角形的性质的综合问题,添加合适的辅助线,综合应用直角三角形的性质和圆周角定理,垂径定理和圆内接四边形的性质,是解题的关键.23、(1)详见解析;(2)【分析】(1)直接利用三角形中位线定理结合切线的性质得出DE⊥BC;

(2)过O点作OF⊥AB,分别用AO表示出FO,BF的长进而得出答案.【详解】(1)连接∵为⊙的切线,∴∵为中点,为的中点∴∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论