继续教育-山东八大战略内容及厦门理工学院概率论与数理统计习题册答案_第1页
继续教育-山东八大战略内容及厦门理工学院概率论与数理统计习题册答案_第2页
继续教育-山东八大战略内容及厦门理工学院概率论与数理统计习题册答案_第3页
继续教育-山东八大战略内容及厦门理工学院概率论与数理统计习题册答案_第4页
继续教育-山东八大战略内容及厦门理工学院概率论与数理统计习题册答案_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE22八大战略视频学习1.美国的整体布局是以什么为内容的新型经济学、新秩序【ABC】2.互联网的特性【全球性】3.区块链产业应原则有【法规、技术….ABCD】4.英国央行提出一个法币一个来往账户【正确】5.传统的网络协议是很慢的?【正确】6.消费者使用案例主要与智能家居、个人健康和互联网信息娱乐相关【正确】7.2019年中国大数据与商业分析方案市场中收益前三的行业是【金融、政府、通信】8.2018年度中国网络广告核心数据显示,中国网络广告市场规模达到4844亿元【正确】9.以传感网络为为依托的智慧物流服务,大大降低物流信息处理成本【正确】10.人工智能最难的也是现在努力的方向就是让机器人能理解,会思考【正确】11.国家海洋数据管理已将建立了相对完善的体系【正确】12.高质量发展最核心的是建设一个现代化的经济体系【正确】13.青岛港智慧港口还没有有实现码头安防无人化【错误】14.相较于其他农产品而言,大田粮食类收入微薄,在考虑土地流转费、市场市场扰动因素等后,盈利比较困难【正确】15.非耐运蔬菜和耐运蔬菜的比例为【4:6/6:4】16.我国农业最大的问题是没有定价权,市场把控能力不足【正确】17.地方政策实例()等地推进乡村振兴产业基金【山东、北京、广东】18.成立地方农业金融支撑体系、土地担当,进行土地加地上资产的证券化【正确】19.hibq失败情况的分析一共有()个问题【5个】20.第一次工业革命催生并极大的壮大了()等行业【纺织、冶金、铁路】21.知识产权的问题现在成为我们改善对外经贸环境的着重考虑的一环【正确】我省八大战略考试试卷(三)单选题:共15题,每题2分,合计30分1()是我国农业发展面临的最严峻的问题。生态环境破坏人口老龄化大量农产品供过于求国际环境恶化2以下属于大田类粮食作物的是()。水稻土豆红薯萝卜3我国现有的农产品评价标准中,主要针对农药的使用的是()。绿色有机无公害非转基因42018年第四季度中国智能家居设备出货量前五位的厂商中,()凭借自身渠道优势通过智能音箱和智能电视盒子两个主要产品位列第四。百度海尔小米阿里5()作为一种通用基础设施被普遍安装到经济社会各领域,重新定义世界连接关系。移动互联网网络通信技术云计算技术软件和算法6英国央行行长2019年8月23日提出()取代美元成为世界储备货币。“合成霸权数字美元”“合成霸权数字英镑”“合成霸权数字法币”“合成霸权数字日元”7区块链可以大幅缩短周期,现在贸易金融周期是()天。868788898()是核心技术。大数据区块链人工智能云计算9农产品最终的味道和结果60%依赖于()。种业种植技术辅助技术土地10从美国进口农产品有时比本国市场价格低廉的原因在于()。美国的规模化农业美国农产品补贴额度高我国跨界型、管理型人才欠缺我国种业种植技术的匮乏11种业种植的收益远高于农产品生产,但其中的难点不包括()。研究周期长跨学科领域人员匮乏投资额巨大12()的协议是加密+拜占庭将军。真链弱链伪链类似链13()的协议是中心化一致性。真链弱链伪链类似链14()的协议是加密+数据库一致性。真链弱链伪链类似链15()主要包括工业机器人、数控机床、3D打印设备、智能控制系统等。智能制造装备智能家居可穿戴设备云计算判断题:共10题,每题2.5分,合计25分16政务行业是中国云计算应用最为成熟的领域。正确错误17美国的基础型智能产业引领全球,无论是云计算、大数据、人工智能、芯片、软件等领域都有一批世界一流的企业,产业生态圈比较完善,技术创新比较活跃,企业国际化能力较强。正确错误18根据德勤报告,全球人工智能领域融资在2016年迎来全面爆发。正确错误19IDC预计2019年在物联网解决方案上投入最多的行业是离散制造业、流程制造业、运输业和公用事业。正确错误20制造型智能产业主要是提供通用信息服务的产业,包括移动互联网、云计算、大数据、物联网、人工智能、芯片、软件等支撑性信息技术产业。正确错误21比特币可以1年365天、一天24小时交易,但仍存在信用风险与流动性风险。正确错误22英国的布局是由英国央行兴起,由数字支付开始。正确错误23产业应用需要设计、标准,但并不需要沙盒。正确错误24美国医药供应链需要一种穿透式监管模型。正确错误25美国医药供应链提供系统需求、数据结构、算法。正确错误多选题:共15题,每题3分,合计45分26构建区块链产业生态,实现链满天下,包括()。创新链应用链价值链监管链27在海洋边缘利用漂浮农场或盐碱地进行无土化栽培改造。需要考虑:()。消费人群消费时间投资回报产品品质持续性28农产品深加工产业的优势在于()方面。消耗过剩农产品带来税收收入工业用地、用电总账收益高29农业核心问题可以分解为以下()层面。技术人才资本市场金融30我国在()领域的制造供给能力位于全球第一。PC智能手机可穿戴设备智能家居智能汽车31我国智能产业的发展与政策导向讲述的制造型智能产业包括()。计算机产业服务器产业智能手机产业可穿戴设备产业智能家居产业32中国农业发展面临的问题包括以下()方面。国际环境环境与生态低出生人口治理方式农业产业转型33乡村振兴战略的重要任务有()。发展农村数字经济统筹推动城乡信息化融合发展推动网络扶贫向纵深发展深化信息惠民服务繁荣发展乡村网络文化34与国际标准相比,我国国内检测农产品时少了三个关键标准,分别是()。农药残留营养价值亚硝酸盐重金属菌落总数35成功实施智慧农业需要()。合理安排政府补贴的节奏聚焦农业补贴额度,形成良性示范点实施科技人才食品安全保障体系提供给农业落地的必备条件,形成整套服务体系分门别类定位农业产业,提高相应类别销售能力和附加值36美国的布局:以()为内容的新型宏观经济学、新秩序。科技市场监管经济37区块链应用包括()。基础设施APP软件模版平台、产业治理社区开放全球应用38中国发展区块链“三部曲”包括()。简易模型深度融合模型深度结合模型转移模型转型模型39中国的基础型智能产业发展存在的问题有()。处在全球产业价值链中低端,产量大,但高端制造能力存在一定不足基础理论和基础算法创新不足开发工具等工具链存在体系性缺失产业链条存在短板,产业生态不完善企业国际市场拓展能力较弱40区块链产业沙盒可以用来()。数字股票交易所监管产业沙盒供应链金融清算支付概率论与数理统计练习题(理工类)系专业班姓名学号第一章随机事件及其概率§1.1随机事件及其运算一、选择题1.对掷一颗骰子的试验,在概率论中将“出现奇数点”称为[C](A)不可能事件(B)必然事件(C)随机事件(D)样本事件2.甲、乙两人进行射击,A、B分别表示甲、乙射中目标,则表示[C](A)二人都没射中(B)二人都射中(C)二人没有都射中(D)至少一个射中3.在电炉上安装了4个温控器,其显示温度的误差是随机的。在使用过程中,只要有两个温控器显示的温度不低于临界温度,电炉就断电。以表示事件“电炉断电”,设为4个温控器显示的按递增排列的温度值,则事件等于(考研题2000)[C](A)(B)(C)(D)二、填空题:1.以表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为“甲种产品滞销或乙种产品畅销”。2.假设是两个随机事件,且,则,。3.对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2

个次品就停止检查,或检查4

个产品就停止检查,记录检查的结果,样本空间为{(正,正,正,正),(正,正,正,次),(正,正,次,正),(正,正,次,次),(正,次,正,正),(正,次,正,次),(正,次,次),(次,正,正,正),(次,正,正,次),(次,正,次,正),(次,正,次,次),(次,次)}。

三、计算题:1.一盒内放有四个球,它们分别标上1,2,3,4号,试根据下列3种不同的随机实验,写出对应的样本空间:(1)从盒中任取一球后,不放回盒中,再从盒中任取一球,记录取球的结果;(2)从盒中任取一球后放回,再从盒中任取一球,记录两次取球的结果;(3)一次从盒中任取2个球,记录取球的结果。解:2.设为三个事件,试将下列事件用的运算关系表示出来:(1)三个事件都发生;(2)三个事件都不发生;(3)三个事件至少有一个发生;(4)发生,不发生;(5)都发生,不发生;(6)三个事件中至少有两个发生;(7)不多于一个事件发生;(8)不多于两个事件发生。解:(1)(2)(3)(4)(5)(6)(7)不多于一个事件发生=至多一个事件发生=至少两个事件不发生=(8)不多于两个事件发生=至多两个事件发生=至少一个事件不发生=3.甲、乙、丙三人各向靶子射击一次,设表示“第人击中靶子”。试说明下列各式表示的事件:(1);(2);(3);(4)。解:(1)只有乙未击中靶(2)甲,乙至少有一个人击中,而丙未击中靶(3)至少有两人击中靶(4)只有一个击中靶概率论与数理统计练习题(理工类)系专业班姓名学号第一章随机事件及其概率§1.2事件的频率与概率、§1.3古典概型和几何概型选择题:1.掷两颗均匀的骰子,事件“点数之和为3”的概率是[B](A)(B)(C)(D)2.有6本中文书和4本外文书,任意往书架摆放,则4本外文书放在一起的概率是[D](A)(B)(C)(D)3.A、B为两事件,若,则[B](A)(B)(C)(D)二、填空题:1.某产品的次品率为2%,且合格品中一等品率为75%。如果任取一件产品,取到的是一等品的概率为。2.设A和B是两事件,,,则3.在区间(0,1)内随机取两个数,则两个数之差的绝对值小于的概率为(考研题2007)三、计算题:1.设,,求A、B、C都不发生的概率。解:2.罐中有12颗围棋子,其中8颗白子,4颗黑子,若从中任取3颗,求:(1)取到的都是白子的概率;(2)取到的两颗白子,一颗黑子的概率;(3)取到的3颗中至少有一颗黑子的概率;(4)取到的3颗棋子颜色相同的概率。解:3.甲、乙两人约定在上午7点到8点之间在某地会面,先到者等候另一人20分钟,过时即离去。设二人在这段时间内的各时刻到达是等可能的,且二人互不影响,求二人能会面的概率。解:设甲是在第分钟到达,乙是在第分钟到达,则概率论与数理统计练习题系专业班姓名学号第一章随机事件及其概率§1.4条件概率、§1.5事件的独立性选择题:1.设A、B为两个事件,,且,则下列必成立是[A](A)(B)(C)(D)2.设A,B是两个相互独立的事件,已知,则[C](A)(B)(C)(D)3.对于任意两个事件A和B(考研题2003)[B](A)若,则一定独立(B)若,则有可能独立(C)若,则一定独立(D)若,则一定不独立*4.设是两两独立,则事件相互独立的充要条件是(考研题2000)[A](A)和独立(B)和独立(C)和独立(D)和独立二、填空题:1.设,则。2.已知为一完备事件组,且,则。3.设两两独立的事件A,B,C满足条件,,且已知,则(考研题1999)。三、计算题:1.某产品由甲、乙两车间生产,甲车间占60%,乙车间占40%,且甲车间的正品率为90%,乙车间的正品率为95%,求:(1)任取一件产品是正品的概率;(2)任取一件是次品,它是乙车间生产的概率。解:2.为了防止意外,在矿内同时设有两报警系统A与B,每种系统单独使用时,其有效的概率系统A为0.92,系统B为0.93,在A失灵的条件下,B有效的概率为0.85,求:(1)发生意外时,这两个报警系统至少一个有效的概率;(2)B失灵的条件下,A有效的概率。解:(1),。。(2)四、证明题设A,B为两个事件,,证明与独立。证:概率论与数理统计练习题系专业班姓名学号随机变量及其分布§2.1随机变量概念及分布函数、§2.2离散型随机变量及其分布一、选择题:1.设X是离散型随机变量,以下可以作为X的概率分布是[B](A)(B)(C)(D)2.设随机变量的分布列为,为其分布函数,则=[B](A)0.2(B)0.4(C)0.8(D)13.设随机变量,已知,则[D](A)(B)(C)(D)二、填空题:1.设随机变量X的概率分布为,则a=。2.某产品15件,其中有次品2件。现从中任取3件,则抽得次品数X的概率分布为3.设射手每次击中目标的概率为0.7,连续射击10次,则击中目标次数X的概率分布为三、计算题:1.同时掷两颗骰子,设随机变量为“两颗骰子点数之和”,求:(1)X的概率分布;(2);(3)。解:2.一袋中装有5只球编号1,2,3,4,5。在袋中同时取3只,以X表示取出的3只球中最大号码,写出随机变量X的分布律和分布函数。解:3.某商店出售某种物品,根据以往经验,每月销售量服从参数为的泊松分布,问在月初进货时,要进多少才能以99%的概率充分满足顾客的需要?解:,查表有概率论与数理统计练习题系专业班姓名学号随机变量及其分布§2.3连续型随机变量及其概率密度一、选择题:1.设连续型随机变量的密度函数为,则常数[A](A)(B)(C)(D)2.设随机变量的分布函数为,则常数[A](A)(B)(C)(D)*3.设是随机变量的分布函数,是相应的概率密度函数,则以下必为概率密度的是(考研题2011)[D](A)(B)(C)(D)二、填空题:1.设连续型随机变量的概率密度为,则常数=3。2.设随机变量,求方程有实根的概率为。3.设随机变量,已知,则。三、计算题:1.设,求和。解:2.设随机变量的密度函数为,且,求:(1)常数;(2);(3)的分布函数。解:3.设顾客在某银行的窗口等待服务的时间(单位:min)服从参数的指数分布,现某顾客在窗口等待服务,若超过10min,他就离开。求:(1)设某顾客某天去银行,求他未等到服务就离开的概率;(2)设某顾客一个月要去银行五次,求他五次当中至多有一次未等到服务的概率。解:,(1)(2):某顾客未等到服务就离开的次数,概率论与数理统计练习题系专业班姓名学号随机变量及其分布§2.4随机变量函数的分布一、选择题:1.已知的概率分布律为,则[C](A)(B)(C)(D)2.设随机变量在区间[-1,2]上服从均匀分布,随机变量,则随机变量的分布律为[B](A)(B)(C)(D)3.设的密度函数为,则随机变量的概率密度为[A](A)(B)(C)(D)二、填空题:1.设随机变量服从参数为1的指数分布,则的概率密度为。2.对圆片直径进行测量,测量值服从(5,6)上的均匀分布,则圆面积的概率密度为3.设随机变量的服从参数为的泊松分布,记随机变量,则随机变量的分布律为三、计算题:1.设,求:(1)的概率密度;(2)的概率密度。解:*2.设随机变量的概率密度为是的分布函数,求随机变量的分布函数(考研题2003)。解:设是的分布函数,当时,;当时,。当时有或所以概率论与数理统计练习题系专业班姓名学号第二章随机变量及其分布综合练习1.从一批含10件正品及3件次品的产品中一件一件地抽取。设每次抽取时,各件产品抽取到的可能性相等。在下列三种情形下,分别求出直到取得正品为止所需次数的分布律。(1)每次取出的产品立即放回这批产品中再取下一件产品;(2)每次取出的产品都不放回这批产品中;(3)每次取出一件产品后总是放回一件正品。解:(1):第次取得是正品()X1234……….P………….(2):第次取得是正品()X1234P(3):第次取得是正品()X1234P2.设随机变量具有概率密度(1)确定常数;(2)求的分布函数;(3)求。解:(1)(2)(3)3.某种电子元件在电源电压不超过200伏,200240伏,及超过240伏3种情况下,损坏率依次为0.1,0.001及0.2。设电源电压,试求:(1)此种电子元件的损坏率;(2)此种电子元件损坏时,电源电压在200240伏的概率。解::电源电压不超过200伏,:电源电压不超过200240伏,:电源电压不超过240伏,:电子元件损坏(1)(2)4.某城市成年男子的身高(单位:厘米)。(1)问应如何设计公共汽车车门的高度,才能使该城市成年男子与车门碰头的概率小于0.01?(2)若车门设计高度为182厘米,求该城市10个男子与车门顶碰头人数不多于1人的概率?解:(1).若把公共汽车车门高度为170cm,则有不符合要求所以应该把公共汽车车门设计为比170cm高一些的高度,使得即查表有=0.9901>0.99cm(2):10个男子与车门碰头的人数,则,其中概率论与数理统计练习题系专业班姓名学号第三章多维随机变量及其分布§3.1二维随机变量及其分布、§3.2边缘分布一、选择题:1.下列函数可以作为二维分布函数的是[C](A)(B)(C)(D)2.设二维随机变量(X,Y)的概率密度为则的值必为[B](A)(B)(C)(D)二、填空题:1.的联合分布率由下表给出,则,应满足的条件是。(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)P1/61/91/181/32.的分布函数为,则0,的分布函数为,则。3.若的联合密度为,则常数=2,三、计算题:1.在一箱子中装有12只开关,其中2只次品,在其中取两次,每次任取一只,考虑两种实验:(1)放回抽样;(2)不放回抽样。我们定义随机变量X,Y如下:,试分别就(1),(2)两种情况,写出X和Y的联合分布律。解:(1)(2)YYXX2.设随机变量的概率密度为,求:(1)常数k;(2);(3)解:(1)(2)(3)3.设二维随机变量在上服从均匀分布,其中由与围成,求:(1)边缘密度;*(2)条件概率密度。解:(1)概率论与数理统计练习题系专业班姓名学号第三章多维随机变量及其分布§3.4随机变量的独立性、§3.5二维随机变量函数的分布一、选择题:1.设随机变量与独立,且,则仍服从正态分布,且有[D](A)(B)(C)(D)2.若服从二维均匀分布,则[B](A)随机变量都服从均匀分布(B)随机变量不一定服从均匀分布(C)随机变量一定不服从均匀分布(D)随机变量服从均匀分布3.设两个相互独立的随机变量和分别服从正态分布N(0,1)和N(1,1),则[B](A)(B)(C)(D)二、填空题:1.设二维随机变量的密度函数为,则。2.设随机变量同分布,的密度函数为,设与相互独立,且,则。三、计算题:1.已知,X与Y独立,确定a,b的值,求出的联合概率分布以及的概率分布。解:(1)(2)YX(3)YXP2.随机变量与的联合密度函数为,分别求下列概率密度函数:(1);(2);(3)。解:3.设X和Y相互独立,其概率密度函数分别为,,求:(1)常数A;(2)随机变量的概率密度函数。解:概率论与数理统计练习题系专业班姓名学号第四章随机变量的数字特征§4.1数学期望一、选择题:1.设X的概率密度为,则[B](A)(B)(C)(D)2.设是随机变量,存在,若,则[D](A)(B)(C)(D)3.设随机变量和独立且服从上的均匀分布,则(考研题2011)[C](A)(B)(C)(D)二、填空题:1.设随机变量X的可能取值为0,1,2,相应的概率分布为,则0.5X012P1/51/61/51/1511/30X012P1/51/61/51/1511/303.设X为正态分布的随机变量,概率密度为,则9*4.设随机变量独立且同分布,则行列式的数学期望0(考研题1999)。三、计算题:1.袋中有5个乒乓球,编号为1,2,3,4,5,从中任取3个,以表示取出的3个球中最大编号,求:(1)的分布律;(2)求的数学期望解:2.设随机变量X的密度函数为,试求下列随机变量的数学期望:(1);(2);(3)。解:概率论与数理统计练习题系专业班姓名学号第四章随机变量的数字特征§4.2方差一、选择题:1.设随机变量服从区间上的均匀分布,则方差[C](A)(B)(C)(D)2.已知,则[B](A)9(B)6(C)30(D)363.设服从参数为的泊松分布,,则[D](A)(B)(C)(D)二、填空题:1.设随机变量X的可能取值为0,1,2,相应的概率分布为0.6,0.3,0.1,则0.45。2.设随机变量X的密度函数为,则2。3.设正态分布Y的密度函数是,则*4.设随机变量服从参数为的泊松分布,则(考研题2008)。三、计算题:1.设随机变量X的可能取值为1,2,3,相应的概率分布为0.3,0.5,0.2,求的期望与方差。解:2.设随机变量,试求;;。解:3.设随机变量的密度为,已知,求:(1)常数a,b的值;(2)方差;*(3)随机变量的期望与方差。解:概率论与数理统计练习题系专业班姓名学号第四章随机变量的数字特征§4.3协方差、相关系数一、选择题:1.对任意两个随机变量,若,则[B](A)(B)(C)相互独立(D)不相互独立2.将一枚硬币重复掷次,以和分别表示正面向上和反面向上的次数,则和的相关系数等于(考研题2001)[A](A)(B)0(C)(D)二、填空题:1.设随机变量服从正态分布,则=13。2.设与独立,且,,则27。3.设,则37。三、计算题:010.1250.1250.12500.12500.12510.1250.1250.125已知二维随机变量的分布律如表:试验证与不相关,但与Y不独立。解:2.设,且X,Y相互独立,求:。解:3.设和为随机变量,且,,。令。(1)求二维随机变量的概率分布;(2)求和的相关系数(考研题2004)。(1)00三、证明题:设随机变量服从区间上的均匀分布,设随机变量,证明:不相关。证:概率论与数理统计练习题系专业班姓名学号第四章随机变量的数字特征综合练习一、填空题:1.随机变量X服从区间[0,2]上的均匀分布,则。2.设随机变量,的相关系数,若,则和的相关系数=0.9。*3.设随机变量服从标准正态分布,则(考研题2013)。二、计算题:1.设随机变量等概率取5个值:,,,和,求的数学期望与方差。解:2.设,,为互相独立的随机变量,且,,,求。解:3.在长为的线段上独立地任选两点,求两点间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论