




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省运城市永济中学2024届数学高一上期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知圆:与圆:,则两圆的公切线条数为A.1条 B.2条C.3条 D.4条2.函数的最小值为()A.1 B.C. D.3.已知,是不共线的向量,,,,若,,三点共线,则实数的值为()A. B.10C. D.54.如图,正方形ABCD的边长为2,动点E从A开始沿A→B→C的方向以2个单位长/秒的速度运动到C点停止,同时动点F从点C开始沿CD边以1个单位长/秒的速度运动到D点停止,则的面积y与运动时间x(秒)之间的函数图像大致形状是()A. B.C. D.5.若函数,,则函数的图像经过怎样的变换可以得到函数的图像①先向左平移个单位,再将横坐标缩短到原来的倍,纵坐标保持不变.②先向左平移个单位,再将横坐标缩短到原来的倍,纵坐标保持不变.③将横坐标缩短到原来的倍,再向左平移个单位,纵坐标保持不变.④将横坐标缩短到原来的倍,再向左平移个单位,纵坐标保持不变.A.①③ B.①④C.②③ D.②④6.函数y=ln(1﹣x)的图象大致为()A. B.C. D.7.在平面直角坐标系中,大小为的角始边与轴非负半轴重合,顶点与原点O重合,其终边与圆心在原点,半径为3的圆相交于一点P,点Q坐标为,则的面积为()A. B.C. D.28.已知实数满足,则函数的零点在下列哪个区间内A. B.C. D.9.关于函数,下列说法正确的是()A.最小值为0 B.函数为奇函数C.函数是周期为周期函数 D.函数在区间上单调递减10.有一组实验数据如下现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最佳的一个是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.求过(2,3)点,且与(x-3)2+y2=1相切的直线方程为_____12.棱长为2个单位长度的正方体中,以为坐标原点,以,,分别为,,轴,则与的交点的坐标为__________13.已知幂函数过定点,且满足,则的范围为________14.东方设计中的“白银比例”是,它的重要程度不亚于西方文化中的“黄金比例”,传达出一种独特的东方审美观.折扇纸面可看作是从一个扇形纸面中剪下小扇形纸面制作而成(如图).设制作折扇时剪下小扇形纸面面积为,折扇纸面面积为,当时,扇面看上去较为美观,那么原扇形半径与剪下小扇形半径之比的平方为________15.正三棱锥中,,则二面角的大小为__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知全集,集合,集合.条件①;②是的充分条件;③,使得(1)若,求;(2)若集合A,B满足条件__________(三个条件任选一个作答),求实数m的取值范围17.已知函数,,(1)求函数的值域;(2)若对任意的,都有恒成立,求实数a的取值范围;(3)若对任意的,都存在四个不同的实数,,,,使得,其中,2,3,4,求实数a的取值范围18.如图,已知圆心在x轴正半轴上的圆C与直线5x+12y+21=0相切,与y轴交于M,N两点且∠MCN=120°.(1)求圆C的标准方程;(2)求过点P(0,3)的直线l与圆C交于不同的两点D,E,若|DE|=2,求直线l的方程.19.如图,在中,斜边,,在以为直径的半圆上有一点(不含端点),,设的面积,的面积.(1)若,求;(2)令,求的最大值及此时的.20.某生物研究者于元旦在湖中放入一些凤眼莲,这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲覆盖面积为24m2,三月底测得覆盖面积为36m2,凤眼莲覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型与可供选择(1)试判断哪个函数模型更合适,并求出该模型的解析式;(2)求凤眼莲覆盖面积是元旦放入面积10倍以上的最小月份(参考数据:lg2≈03010,lg3≈0.4771)21.已知函数的图象时两条相邻对称轴之间的距离为,将的图象向右平移个单位后,所得函数的图象关于y轴对称.(1)求函数的解析式;(2)若,求值.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】求出两圆的圆心与半径,利用圆心距判断两圆外离,公切线有4条【详解】圆C1:x2+y2﹣2x=0化为标准形式是(x﹣1)2+y2=1,圆心是C1(1,0),半径是r1=1;圆C2:x2+y2﹣4y+3=0化为标准形式是x2+(y﹣2)2=1,圆心是C2(0,2),半径是r2=1;则|C1C2|r1+r2,∴两圆外离,公切线有4条故选D【点睛】本题考查了两圆的一般方程与位置关系应用问题,是基础题2、D【解析】根据对数的运算法则,化简可得,分析即可得答案.【详解】由题意得,当时,的最小值为.故选:D3、A【解析】由向量的线性运算,求得,根据三点共线,得到,列出方程组,即可求解.【详解】由,,可得,因为,,三点共线,所以,所以存在唯一的实数,使得,即,所以,解得,.故选:A.4、A【解析】先求出时,的面积y的解析式,再根据二次函数的图象分析判断得解.详解】由题得时,,所以的面积y,它图象是抛物线的一部分,且含有对称轴.故选:A【点睛】本题主要考查函数的解析式的求法,考查二次函数的图象和性质,意在考查学生对这些知识的理解掌握水平.5、A【解析】依次判断四种变换方式的结果是否符合题意,选出正确变换【详解】函数,先向左平移个单位,再将横坐标缩短到原来的倍,函数变为,所以①合题意;先向左平移个单位,再将横坐标缩短到原来的倍,函数变为,所以②不合题意;将横坐标缩短到原来的倍,再向左平移个单位,函数变为,所以③合题意;将横坐标缩短到原来的倍,再向左平移个单位,函数变为,所以④不合题意,故选择A【点睛】在进行伸缩变换时,横坐标变为原来的倍;向左或向右进行平移变换注意平移单位要加或减在“”上6、C【解析】根据函数的定义域和特殊点,判断出正确选项.【详解】由,解得,也即函数的定义域为,由此排除A,B选项.当时,,由此排除D选项.所以正确的为C选项.故选:C【点睛】本小题主要考查函数图像识别,属于基础题.7、B【解析】根据题意可得、,结合三角形的面积公式计算即可.【详解】由题意知,,,所以.故选:B8、B【解析】由3a=5可得a值,分析函数为增函数,依次分析f(﹣2)、f(﹣1)、f(0)的值,由函数零点存在性定理得答案【详解】根据题意,实数a满足3a=5,则a=log35>1,则函数为增函数,且f(﹣2)=(log35)﹣2+2×(﹣2)﹣log53<0,f(﹣1)=(log35)﹣1+2×(﹣1)﹣log53=﹣2<0,f(0)=(log35)0﹣log53=1﹣log53>0,由函数零点存在性可知函数f(x)的零点在区间(﹣1,0)上,故选B【点睛】本题考查函数零点存在性定理的应用,分析函数的单调性是关键9、D【解析】根据三角函数的性质,得到的最小值为,可判定A不正确;根据奇偶性的定义和三角函数的奇偶性,可判定C不正确;举例可判定C不正确;根据三角函数的单调性,可判定D正确.【详解】由题意,函数,当时,可得,所以,当时,可得,所以,所以函数的最小值为,所以A不正确;又由,所以函数为偶函数,所以B不正确;因为,,所以,所以不是的周期,所以C不正确;当时,,,当时,,即函数在区间上单调递减,又因为,所以函数在区间上单调递减,所以D正确.故选:D.10、C【解析】选代入四个选项的解析式中选取所得的最接近的解析式即可.【详解】对于选项A:当时,,与相差较多,当时,,与相差较多,故选项A不正确;对于选项B:当时,,与相差较多,当时,,与相差较多,故选项B不正确;对于选项C:当时,,当时,,故选项C正确;对于选项D:当时,,与相差较多,当时,,与相差较多,故选项D不正确;故选:C.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、或【解析】当直线没有斜率时,直线的方程为x=2,满足题意,所以此时直线的方程为x=2.当直线存在斜率时,设直线的方程为所以故直线的方程为或.故填或.12、【解析】设即的坐标为13、【解析】根据幂函数所过的点求出解析式,利用奇偶性和单调性去掉转化为关于的不等式即可求解.【详解】设幂函数,其图象过点,所以,即,解得:,所以,因为,所以为奇函数,且在和上单调递减,所以可化为,可得,解得:,所以的范围为,故答案为:.14、##【解析】设原扇形半径为,剪下小扇形半径为,,由已知利用扇形的面积公式即可求解原扇形半径与剪下小扇形半径之比【详解】解:由题意,如图所示,设原扇形半径为,剪下小扇形半径为,,则小扇形纸面面积,折扇纸面面积,由于时,可得,可得,原扇形半径与剪下小扇形半径之比的平方为:故答案为:15、【解析】取中点为O,连接VO,BO在正三棱锥中,因为,所以,所以=,所以三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)或【解析】(1)可将带入集合中,得到集合的解集,即可求解出答案;(2)可根据题意中三个不同的条件,列出集合与集合之间的关系,即可完成求解.【小问1详解】当时,集合,集合,所以;【小问2详解】i.当选择条件①时,集合,当时,,舍;当集合时,即集合,时,,此时要满足,则,解得,结合,所以实数m的取值范围为或;ii.当选择条件②时,要满足是的充分条件,则需满足在集合时,集合是集合的子集,即,解得,所以实数m取值范围为或;iii.当选择条件③时,要使得,使得,那么需满足在集合时,集合是集合子集,即,解得,所以实数m的取值范围为或;故,实数m的取值范围为或.17、(1);(2);(3)【解析】(1)利用基本函数的单调性即得;(2)由题可得恒成立,再利用基本不等式即求;(3)由题意可知对任意一个实数,方程有四个根,利用二次函数的图像及性质可得,即求.【小问1详解】∵函数,,所以函数在上单调递增,∴函数的值域为;【小问2详解】∵对任意的,都有恒成立,∴,即,即有,故有,∵,,∴,当且仅当,即取等号,∴,即,∴实数a的取值范围为;【小问3详解】∵函数的值域为,由题意可知对任意一个实数,方程有四个根,又,则必有,令,,故有,故有,可解得,∴实数a的取值范围为.18、(1)(x﹣1)2+y2=4;(2)y或x=0【解析】(1)由题意设圆心为,且,再由已知求解三角形可得,于是可设圆的标准方程为,由点到直线的距离列式求得值,则圆的标准方程可求;(2)当直线的斜率存在时,设直线的方程为,即,利用圆心到直线的距离等于半径列式求得,可得直线方程,验证当时满足题意,则答案可求【详解】解:(1)由题意设圆心为,且,由,可得中,,,则,于是可设圆的标准方程为,又点到直线的距离,解得或(舍去)故圆的标准方程为;(2)当直线的斜率存在时,设直线的方程为,即则由题意可知,圆心到直线的距离故,解得又当时满足题意,故直线的方程为或【点睛】本题考查圆的标准方程的求法,考查直线与圆位置关系的应用,考查计算能力,是中档题.19、(1);(2),有最大值.【解析】由已知可得,.(1)根据解可得答案;(2)由化简为,根据的范围可得答案.【详解】因为中,,,所以,,.又因为为以为直径的半圆上一点,所以.在中,,,.作于点,则,,(1)若,则,因为,所以,所以,整理得,所以,.(2)因为,所以,当时,即,有最大值.【点睛】本题考查了三角函数的性质和解三角形,关键点是利用已知得到,,正确的利用两角和与差的正弦公式得到函数表达式的形式,考查了运算能力.20、(1)选择较为合适;(2)6月【解析】(1)根据指数函数和幂函数的性质可得合适的函数的模型.(2)根据选择的函数模型可求最小月份.小问1详解】指数函数随着自变量的增大其函数的增长速度越大,幂函数随着自变量的增大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2 周末巧安排 教学设计-2024-2025学年道德与法治二年级上册统编版
- 经营权转让合同模板
- 合同样本商业地产项目投资合作协议书
- 个人向公司借款合同简例
- 1-1《子路、曾皙、冉有、公西华侍坐》教学设计-2024-2025学年高一语文下学期同步教学设计(统编版必修下册)
- Module 3 Unit 9 Great cities of the world(教学设计)-2023-2024学年沪教牛津版(深圳用)英语六年级上册
- 25《慢性子裁缝和急性子顾客》(教学设计)-2023-2024学年统编版语文三年级下册
- 猪舍购销合同范本
- 沉降检测合同范本
- 毛毛新车网合同范本
- 2024年湘教版初中地理一轮复习专题三 天气与气候
- 四级人工智能训练师(中级)职业技能等级认定考试题及答案
- 《商务沟通-策略、方法与案例》课件 第八章 求职沟通
- 法律思维及案例培训
- 养老院各职位岗位职责
- 燕窝采购合同模板
- 小学五年级下册外研版英语:Module 5 模块测试
- 诺如病毒课件教学课件
- 《城市轨道交通应急处理》课件-《城市轨道交通应急处理》项目四
- 临建工程劳务承包条件
- GB/T 44561-2024石油天然气工业常规陆上接收站液化天然气装卸臂的设计与测试
评论
0/150
提交评论