四点共圆的运用_第1页
四点共圆的运用_第2页
四点共圆的运用_第3页
四点共圆的运用_第4页
四点共圆的运用_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品实用文档.精品圆内接四边形判定方法1、如果一个四边形的四个顶点与某定点等距离,那么这个四边形内接于以该点为圆心的一个圆;2、如果一个四边形的对角互补,那么这个四边形内接于一个圆;3、如果一个四边形的外角等于它的内对角,那么这个四边形内接于一个圆;4、假设有两个同底的三角形,另一顶点都在底的同旁,且顶角相等,那么这两个三角形有公共的外接圆;圆内接四边形性质:以右图所示圆内接四边形ABCD为例,圆心为O,连接OA、OB,延长AB至E,AC、BD交于P,那么:1、圆内接四边形的对角互补:∠BAD+∠DCB=180°,∠ABC+∠ADC=180°2、圆内接四边形的任意一个外角等于它的内对角:∠CBE=∠ADC3、圆心角的度数等于所对弧的圆周角的度数的两倍:∠AOB=2∠ACB=2∠ADB4、同弧所对的圆周角相等:∠ABD=∠ACD例如图5、圆内接四边形对应三角形相似:△ABP∽△DCP(三个内角对应相等)引例1、〔2021年福州中考〕如图1,点O在线段AB上,AO2,OB1,OC为射线,且∠BOC60,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.〔1〕当t秒时,那么OP,S△ABP;〔2〕当△ABP是直角三角形时,求t的值;〔3〕如图2,当APAB时,过点A作AQ∥BP,并使得∠QOP∠B,求证:AQ·BP3.精品实用文档.精品例2.在梯形ABCD中,AB∥DC,AB>CD,K,M分别在AD,BC上,∠DAM=∠CBK.求证:∠DMA=∠CKB.分析:易知A,B,M,K四点共圆.连接KM,有∠DAB=∠CMK.∵∠DAB+∠ADC=180°,∴∠CMK+∠KDC=180°.故C,D,K,M四点共圆∠CMD=∠DKC.但已证∠AMB=∠BKA,∴∠DMA=∠CKB.例3、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.例4、如图,O是Rt△ABC斜边AB的中点,CH⊥AB于H,延长CH至D,使得CH=DH,F为CO上任意一点,过B作BE⊥AF于E,连接DE交BC于G.求证:∠CAF=∠CDE.

精品实用文档.精品

精品实用文档.精品〔2021•盐城〕如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P〔0,2〕顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.〔1〕求直线AB的函数表达式;〔2〕如图①,假设点Q在直线AB的下方,求点Q到直线AB的距离的最大值;〔3〕如图②,假设点Q在y轴左侧,且点T〔0,t〕〔t<2〕是射线PO上一点,当以P、B、Q为顶点的三角形与△P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论