版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ColorModel
1
Outline
□Introduction
□Spectraldistributions
□SimpleModelfortheVisualSystem
□SimpleModelforanEmitterSystem
□GeneratingPerceivableColors
□C1E-RGBColorMatchingFunctions
2
Outline
□CIE-RGBChromaticitySpace
□CIE-XYZChromaticitySpace
□ConvertingBetweenXYZandRGB
□ColorGamutsandUndjsnlayableColorsy
□Summaryrendering:WhatToDoIn业」''
Practice
3
PrimitivesofColor
Thedifferentvisual
lightspectrum
distribution
lllumina+ion
stimulatetheeyes
andcausethecolor・Reflec+ance
perception
SpectralDistributions
□Radiometry(radiantpower,radianceetc)
■Measurementoflightenergy
□Photometry(luminanceetc)
■Measurementincludingresponseofvisualsystem
□Kn(X)/Xspectra1radiantpowerdistribution
□GenerallyC(X)definesspectralcolordistribution
Xe[%%J=Ac
□Incomputergraspuhsiuca^l)lyradiance.
5
SpectrumCharacterofColor
700nm400nm
1041061081(TMO121O141016101
>frequency(Hz)
-I~I_I~I~I_Il~I~F-wavelength(nm)
10151013101110910710510310110-1104
11
>।1\'HA\1
AMradio/microwave\ultraviolet\gammarays
FMradio,TVinfraredx-rays
6
ColorandWaveLength
Mostlightweseeisnotjustasinglewavelength,
butacombinationofmanywavelengthslikebelow.
Thisprofileisoftenreferredtoasaspectrum,or
spectralpowerdistribution.
7
ColorAsSpectralDistributions
8
SpectrumEfficiencyCurve
Q
A
o
u
e
p
E
e
s
n
o
u
E
n
l
e
z
D
eI
d
9
HumanColorPerception
■TheHumanRetina
-Theeyeisbasicallyjustacamera
-Eachneuroniseitherarodoxacone.
-Rodsarenotsensitivetocolor,butthecones
are!
10
LightIntensityandBrightness
■Intensitydescriesthephysicalamountofenergy,
brightnessdescribesourperceptionofthisenergy;
■Ourperceptionoflightisfunctionofoureyes,
whichperformsnumerousunconscious
correctionsandmodifications.Forexample,the
equaldensitiesofcoloredlightareperceivedas
beingofdifferentbrightnessdependingonthe
color.
11
MonochromaticLight(PureColor)
□6(1)=0,九wOO
□f5(X)dX=1/
□Jb⑴f(x-t)dt=f(x)
□C(X)=5(X-Xo)isspectraldistributionforpure
colorwithwavelengthXo
12
VisibleSpectrum
13
收工INVISIBLE
SUN
SchematicRepresentation
ofColorSpectra
EARTH
ColorSpace
□Spaceofallvisiblecolor^^quivalenttosetof
allfunctionsC:A—R
■C(X)>OallXI-J
■C(X)>0someX(atleast
□(Cardinalityofthisspaceis2C)
15
Perceptionand
TheSixthSense5Movie
□Wedonot'see9C(X)directlybutasfiltered
throughvisualsystem.
□Twodifferentpeople/animalswil「see'<(R)
differently.
□DifferentC(九)scanappearexactlythesametoone
individual(metamer).
□(Ignoringall'higherlevefprocessing,which
basicallyindicates66weseewhatweexpecttosee").
16
InfinitetoFinite
□Colorspaceisinfinitedimensional
□Visualsystemfilterstheenergydistribution
throughafinitesetofchannels
□Constructsafinitesignalspace(retinallevel)
□Throughopticnervetohigherorderprocessing
(visualcortex).
17
ASimpleModelforVisualSystem
OPTIC
NERVE
HumanEyeSchematic18
PhotosensitiveReceptors
□Rods-130,000,000nightvision+
peripheral(scotopic)
□Cones-5-7,000,000,daylightvision+
acuity(onepointonly)(Photopic)
□Cones
19
LMSResponseCurves
□I=fc(X)L(X)dX
□m=fc(X)M(X)dX
□s=fC(X)S(X)dX
口C—(trichromati£jheory)
□LMS(C)=(l,m5)
□LMS(Ca)=LMS(Cb)thenCa,Cbare
metamers.
20
2-degreeconenormalised
responsecurves
D(
OU
cs—10
n10
o.20
)J',0
^0
Ao,8
usw.460
o20
'so
p0
匕
。o
d。.03
s456oo78
0000000000
wavelength(nm)
21
SimpleModelforanEmitter
System
□Generateschromaticlightbymixingstreams
ofenergyoflightofdifferentspectral
distributions
□Finitenumber(>=3)andindependent
22
Primaries(Basis)foranEmitter
□CE(九)=%E[仇)+a2E2(X)+(X3E3(九)
□Ejaretheprimaries(formabasis)
□以arecalled\h^^tensitiep
□CIE-RGBPrimariesare:
■ER仇)=5(X-,R),九R=700nm
■EG(X)=3(九-九G),九G=546.Inm
■EB(X)=8(X-九B),九B=435.8nm
23
ComputingTheIntensities
□ForagivenC(X)problemistofindthe
intensities必suchthatCE(X)ismetamericto
CQ).
□FirstMethodtobeshownisn'tused,but
illustrativeoftheproblem.
24
ColorMatchingFunctions
□PreviousmethodreliedonknowingL,M,
andSresponsecurvesaccurately.
□Bettermethodbasedoncolormatching
functions.
□Definehowtogetthecolormatching
functions%Q)relativetoagivensystemof
primaries.
25
CIEColorMatchingExperiments
S
2
S
3
OdC
w
i
mi
OBSERVER
26
ColorMatchingExperiment
Mixingof3primaries
Targetcolor
overlap
Adjustintensitiestomatchthecolor
27
2-degreeRGBColorMatching
Functions
3o
.5
39o
2o
2.5o
A.0
1.5o
*so
u1.0
.5o
ol).0
u0.o
一0.
-0.50300350400450TOO550600650700750800
-1.00
wavelengthnm
28
ColorMetamer
Agivencolorthatweperceivedmatcheswith
unlimitedspectrumdistributions.Thisphenomenais
calledmetamer.Sothespectrumcannotbeusedas
coiorTneMcThestrategyistochoosethesimplist
spectrumtorepresentaspecificcolor.
29
___________RGBM2del
Acolorwecanperceivedcanbesynthesizedbyany
threepurecolorsthatmeetcertainrequirements.
Thesethreebasiccolorsarecalledprimitives.The
quiteoftenusedprimitivesareRed、Greenand
Blue。
30
⑴Colorspaceis3D,thethreestimulicanbe
dominantwavelength,saturation,and
intensity,orred,greenandblue;
(2)Anycolorcanberepresentedbytristimulus,
iftheyareredgreenandblue,then
C(C)=R(R)+G(G)+B(B)
31
H.GrassmannLaw
(3)Propertiesofcolormixingj
C3.1)iftwocolor
q(C)=R|(R)+O(G)+B[(B)
C2(C)=R2(R)+G2(G)+B2(B)aremixed,thentheresult
is:
C3(C)=(R1+R2)(R)+(G1+G2)(G)+(B1+B2)(B)
32
H.GrassmannLaw
C3.2)ifthetristimulusofcolorC(C)=
R(R)+G(G)+B(B)arescaledthesamektimes,then
thecolorwillalsobescaledktimes,thatis:
kC(C)=kR(R)+kG(G)+kB(B)
(3.3)ifC](Q=CCCJ,C2(C)=CfCJthen
C《)=C2(C)
(4Jthecolorspaceiscontinuous.33
C1E-RGBChromaticitySpace
□ConsiderCIE-RGBprimaries:
■ForeachC(X)thereisapoint(aR,aG,aB):
口
CQ)pOCRERQ)+aGEG(X)+aBEB(X)
■Consideringallsuchpossiblepoints
口(aR,aG,aB)
■Resultsin3DRGBcolorspace
■Hardtovisualisein3D
■soweMlfinda2Drepresentationinstead.
34
C1E-RGBChromaticitySpace
□Consider1stonlymonochromaticcolors:
■C(X)=3仇-九c)
□LettheCIE-RGBmatchingfunctionsbe
■rQ),gQ),b(九)厂
□Then,eg,(
■aR(X0)=f5(X-九0)r(X)dX=r(X0)'
□Generally
■(aR%),aG(Z0),aB(X0))=(r(X0),g&),b(X0))
35
C1E-RGBChromaticitySpace
□As九0variesoverallwavelengths
■(r(X0),g(X0),b(X0))sweepsouta3Dcurve.
□Thiscurvegivesthemetamerintensitiesfor
allmonochromaticcolors.
□Tovisualisethiscurve,conventionally
projectontotheplane
aR+aG+aB=1
36
C1E-RGBChromaticitySpace
□Itiseasytoshowthatprojectionof
(OIR,OCG,otB)onto+ocG+otB=1is:
■(0CR/D,01c/D,aB/D),
□D=aR+aG+aB
□Showthatinteriorandboundaryofthe
curvecorrespondtovisiblecolors.
□C1E-RGBchromaticityspace.
37
C1E-RGBChromaticityDiagram
38
C1E-RGBChromaticity
□Define:
■VQ)=bj(.+b2M(X)+b3S(X)
□Specificconstantsbjresultsin
■Spectralluminousefficiencycurve
□OverallresponseofvisualsystemtoC(X)
■L(C)=KfC(X)V(X)dX
□ForK=680lumens/watt,andCasradiance,
calledthemin(candelaspersquaremetre)
39
SpectralLuminousEfficiency
Function
40
8-8壬+D-y+fdH(D)q■
6□
YP(Y>(Y)司8:
ypsAsfujy+
YP(Y)>(sfuFdn§□
UOIIJL□
母
gd8H+SD山£+(Y)/"au■
□
。
—
2P二pluojlo8D&JU
LuminanceandChrominance
口L(C)=aRlR+aGlG+aBlB
■andlRlG1Bareconstants
□Considersetofall(aR,aG,aB)satisfyingthis
equation...
■aplaneofconstantluminanceinRGBspace
□OnlyonepointonplanecorrespondstocolorC
■sowhatisvarying?
□Chrominance
■Thepartofacolor(hue)abstractingawaythe
luminance
□color=chrominance+luminance(independent)
42
LuminanceandChrominance
□Considerplaneofconstantluminance
■OR+aG+apk=L
□Leta*=(a,,a%,a,))beapointonthisplane.
■(ta,,toe,,ta'%),t>0isalinefrom0througha"
□Luminanceisincreasing(tL)butprojectionon
aR+aG+otB=1isthesame.
□ProjectiononaR+aG+aB=1isawayof
providing2Dcoordsystemforchrominance.
43
ChangeofBasis
□EandFaretwodifferentprimaries
■C(X)«oc1E](入)+a2E2(X)+a3E3(X)
■^(1)+32F2(x)+P3F3(X)
□LetAbethematrixthatexpressesFintermsofE
■FQ)=AEQ)
□Then
■oc=pA
■YEj(X)=XiyFi(X)(CMFs)
44
CalculateTheTristimulus
Thinkoverthequestionofhowtocalculatethe
tristimulusofanexperimentallight.Wecansee
fromthematchingexperimentthat,whenRGBis
usedtomatchagivenwavelengthpurelight,the
tristimulusaredetermined.Foranyexperiment
lightwitharbitraryspectrumdistribution,wecan
giveafactortoeverywavelengh,andthensum
thethreestimuli.
45
Calculatethetristimulus
R=f:P(2)r-(2)J2=Z770P(2)r―(2)
G=C:7V)g-----⑷曲大尸770(㈤-g----(㈤
-770―
B=J8:P(2)Z?(2)J2=ZP(2)/;(2)
46
ExampleofColorCalculation
43.10
-
n
t
e
n
s
t一
y
1
0.8263
0.6027
380460540620700
435.8546.1700
wavelength47
ExampleofColorCalculation
R=尸(435.8)/(435.8)+尸(546.1)・r(546.1)+P(700)-r(700)
G=P(435.8)•g(435.8)+P(546.1)•g(546.1)+P(700)-g(700)
B=P(435.8)•b(435.8)+P(546.1)・仇546.1)+P(700)・3(700)
即
7?=43.10x0.0232=1
G=0.8263xL2102=l
5=0.6027x1.6592=1
CalculateIntensity
y=P(435.8)-V(435.8)
+尸(546.1)・V(546.1)
A
O
M
+P(700)-7(700)O
I
O
E
O
s
=0.6027x0.01779n
o
c
E-
+0.8263x0.9834z
、4
/
4M
-o
+43.10x0.0041aQ
=12
00i।--------1--------11r-...........I
1300400500600700800
Wavelengtti(nm)
HSVModel
Whenweusethewavelength,theproportion
ofwhitelightinthegivenlight,theintensityto
describeacolor,acolorsystemofHSVCHug,
50
CIEColorSpace
Inordertoachievearepresentationwhichusesonlypositivemixingcoefficients,
theCIE("CommissionInternationaled'Eclairage")definedthreenewhypothetical
lightsources,x,y,andz,whichyieldpositivematchingcurves:
•Definedin1931todescribethefullspaceofperceptiblecolors
•Revisionsnowusedbycolorprofessionals
•Cannotproducetheprimaries-neednegativelight!
C1E-XYZChromaticitySpace
□CIE-RGBrepresentationnotideal
■colorsoutside1stquadrantnotachievable
■NegativeCMFfunctionranges
□CIEderivedadifferentXYZbasiswithbetter
mathamaticalbehaviour
■X(九),Y(九),Z(X)basisfunctions(imaginaryprimaries)
■X,Zhavezeroluminance
■CMFforYisspectralluminousefficiencyfunctionV
□KnownmatrixAfortransformationtoCIE-RGB
52
C1E-RGBChromaticityDiagram
53
CIE-XYZSystem
■CIE-RGBhasnegtivecoordinates;
■ChooseaXYZtriangletosurroundallthe
spectrumcurves;
■Makethesidesclosewithspectrumcurves;
■ChooseprimitiveYtorepresentintentsity;
54
CIEChromaticityDiagram
■Normalized
AmountsofXand
YforColorsin
VisibleSpectrum
55
C1E-XYZSpace
■Irregular3Dvolumeshapeis
difficulttounderstand
■Chromaticitydiagram(the
samecolorofthevarying
intensity,Y,shouldallendup
atthesamepoint)
x—____x____
X+Y+Z
Y
y~
X+Y+Z
56
CIEXYZChromaticityCoordinates
x
X+Y+Z
y
x+y+z
z
x+Y+z
57
UseCIEChromaticityDiagram
ToDetermineaColor
Tonguelikecontourlinerepresentsallthevisible
lights'wavelengthtrails,thefigurebesidethe
contouristhewavelengthofthevisiblelight.The
linesegmentthatconnectsthetwoendsofthetrailis
calledpurpleline,representsthemixedcolorthat
synthesizedbythepurelightsatthetwoends.The
areainsidethetonguerepresentsallthecolorsthat
canbeproducedbythereallight.Thenormalized
whitelightlocateat(0.333,0.333J.
58
CalculateUsingCIE
Chromaticitypiagram
UseCIEchromaticityDiagramcalculatethe
dominantwavelength;
■Calculatesaturation;
Determinethecolor-givetheintensityY;
59
ExampleofCalculation
Let。](玉,y,乂),02(%2,为,毛)themixedcolor
C12(%12,必2,乂2)isG2=(X1+X2)+(Y+H)+(Z]+Z2)
thenbasedonthex,y,zequeation.wederive
thecoordinatesofC12:
玉7]+xj?yZ+2
X\2,>12
T^T2
60
CIEChromaticityDiagram
Define三院司用忠阁辱率=&stenni隹
©OIOF◎。国BlernentarvDomff喀郡的触普揖厢出
GamutsandPs拄犀
61
CalculateXYZtristimulus
7-----770-----
xIf80°P(2)x(2)t/2=EP(2)x(2)
■:0PU)yU)-----〃=#Q7)70y(9------
z=篮尸⑷-z---(2)"=Z770P(2)z----(-2)
62
CalculateMatchingFunction
■Howtocalculatecolormatching
functionx(X),y(X),z(九)?
63
寸
I9
U2o
O«l!—
W;+-p>
s
U二
o
S
RU』
Oq
YJ
Uo
3-j
So
J
1U
oU
S
PJO(((
dI
一NNN
gQ①)))
4.z
II>2Z
e
PU+++
x」q
(((
2J7(
NNN
①e①))))
m
。p(
S(((
u
P」①S+++
(
s(二;(
3NN——(
NON
))))
二U
,XKH
>SHK
oOI
PeH'PH"
j(J』((
D、
NON7
)))
uJoO2/
i£s。(
CalculateMatchingFunction
FromEquation:y(2)=V(2),weobtain:
7(2)=受4)V(A)
y(4)
7(^)=v(2)
Z(A)=Z(A)V(2)
y(2)
65
2-degXYZColorMatching
Functions
2
1.5
1
0.5
o
300
-0.5
wavelengthnm
66
C1E-XYZChromaticitySpace
□CQ)2X.X(X)+Y.Y(九)+乙Z(九)
■X=fC(X)x(X)dX
■Y=fC(X)y(X)dX[luminance]
■Z=fC(X)z(X)dX
■x,y,zaretheCMFs
67
YSystem:EBU(PAL/SECAM)
Primaryilluminants(X,Y)
0.9Red:0,6400,0,3300
Green:0,2900,0,6000
Blue:0.1500,0.0600
0.8一point(X,Y):0327,0.3221
51fl
0.7
CIE-XYZ505
Chromaticity0.6
Diagram
0.5
0.3
0.2
0.1
ConvertingBetweenXYZandRGB
□SystemhasprimariesRQ),G(X),BQ)
□Howtoconvertbetweenacolorexpressedin
RGBandviceversa?
□Derivation...
69
ColorGamutsand
Undisplayablecolors
□DisplayhasRGBprimaries,withcorresponding
XYZcolorsCR,CG,CB
□ChromaticitiescR,cG,cBwillformtriangleon
CIE-XYZdiagram
□Allpointsinthetrianglearedisplayablecolors
■formingthecolorgamut
70
SomeColorGamuts
00.40.8
ClEx
UndisplayableColors
□SupposeXYZcolorcomputed,butnot
displayable?
□Terminology
■Dominantwavelength
■Saturation
72
ColorMightNotBeDisplayable
□Fallsoutsideofthetriangle(itschromaticity
notdisplayableonthisdevice)
■Mightdesaturateit,moveitalonglineQWuntil
insidegamut(sodominantwavelengthinvariant)
□colorwithluminanceoutsideofdisplayable
range.
■ClipvectorthroughtheorigintotheRGBcube
(chrominanceinvariant)
73
XYZW什hWh什ePoint
ForcoloratP
•Qdominantwave
•WP/WQsaturation
RGBcolorCube
white
sreen
75
RGBCubeMappedtoXYZSpace
RGBfXYZConversion
■Nowdeterminethelineartransformationwhich
mapsRGBtristimulusvaluestoXYZvalues.
■Thismatrixisdifferentforeachmonitor(i.e.
differentmonitorphosphors).
■Monitorshaveafiniteluminancerange(typically100
cd/m2),whereasXYZspaceisunbounded
■Needtobeconcernedwiththedisplayofbright
sources(e.g.thesun)
■tonemapping:reproducingtheimpressionofbrightness
onadeviceoflimitedluminancebandwidth.
77
RGBfXYZConversion
RecalllinearrelationshipbetweenXYZandRGB
spaces:
x“11ai3R
Ya22G
zB
■Linearsystemcanbesolvedifpositionsof3colors
areknowninbothspaces.
■Sometimesmanufacturersprovidetristimulus
valuesformonitorphosphors=(Xr,Yr,Zr)(X,Y,
Zg)痴Yb,Zb)78
RGBfXYZConversion
■Solutionofthelinearsystem:
Note:「尺[「i[「X[
G=0nY=匕
B0ZZr
■...andsimilarlyforG=1andB=1.79
XYZfRGBConversion
■Theoppositetransformationisgivenbythe
inverseoftheoriginalRGBtoXYZmatrix:
°XYZ=MRGBTXYZCRGB
CRGB~MRGBfXYZ^XYZ
■WecanthusdetermineanRGBvalue
associatedwiththeXYZvaluedetermined
earlierfromF(l)
80
XYZfRGBConversion
■UsuallyXYZtristimulusvaluesforeachphosphor
notprovided.
■Manufacturersprovidethechromaticityco
ordinatesofthephosphorsandthewhitepoint
(colorwhenR=G=B=1):
(%,%)(乙,几)(/,%)(/,凡)
■...finallyweneedtoknowtheluminanceofthe
whitepointgivenasYw
V
Let纥=+匕+nxr=--
Er
^Xr=xrErYr=yrErZr=(l-xr-yr)Er
XYZfRGBConversion
■Similarconditionsholdfor(Xg,Yg,Zg)and
阳,丫〃ZJ
■ThereforetheonlyunknownsareE,Eand
一rog
E
X\rXgEgxhEhR
y=yrErybEhG
Z」[_(l-xr-yr)Er(1—与―儿)纥(1—%一券闽
X.1
■...butwealsorequirethat:匕M1
z”,1
82
XYZfRGBConversion
■Firstweneedtodetermine(Xw,Yw,Zw)
given鼠,yw,Yw):
匕Y
=Xw+%+Zw=-
x卬+%+z卬几
X
4=>Xw="(Xw+%+zJ
Xw+匕+Zw
YY
and
・..alsoZw=(l-xw-yw)^
ywyw
83
XYZfRGBConversion
■TodeterminevaluesforEr,EgandEbweobservethat
Xg
X「xX",
ifR+G+B=Wthen+y.+
yr4匕
0ZgZgZ”,
•••Xw=Xr+Xg+Xb=xrEr+XgEg+xbEb
...andsimilarlyforYwandZwleadingtoanewlinear
systeminnounknownsthereforewecansolveforEr,
「Xx
EgandEb:xw%b
Eg
匕%yb
xxEb
Zw0-r0~g~yg)(1一4一%)
84
SharingColorsBetweenMon什ors
■Ifwewishtoguaranteethatacoloronmonitor1
looksthesameasonmonitor
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信阳师范大学《经贸英语》2022-2023学年第一学期期末试卷
- 课外知识拓展活动安排计划
- 销售行业新年工作计划展望
- 《机械零件加工》课件2011模具双元制机械零件加工日历
- 新余学院《综合英语》2023-2024学年第一学期期末试卷
- 创造积极工作氛围的建议计划
- 西南交通大学《工程软件应用》2022-2023学年第一学期期末试卷
- 西华师范大学《日语二外》2022-2023学年第一学期期末试卷
- 西南交通大学《微机原理及应用》2020-2021学年第一学期期末试卷
- 学生拓展训练方案
- 2024年时事政治热点题库单选题200道及答案【易错题】
- EPLAN 电气设计基础与应用 第2版 课件全套 第1-10章 EPLAN P8概述- 报表生成
- 博士期间科研规划
- 初中英语七选五经典5篇(附带答案)
- 英语阅读智慧树知到期末考试答案2024年
- 造价咨询服务咨询服务保证措施
- 2024高三一模宝山作文题解析及范文(用怎样的目光看待事物)
- 在线网课知慧《美术与世界(西安交通大学)》单元测试考核答案
- 基底动脉闭塞脑梗死的护理查房
- 10.3依法收集运用证据 课件-思想政治部编版选择性必修2法律与生活
- xx县综合应急救援指挥中心建设可行性研究报告
评论
0/150
提交评论