计算机图形学colour-anonymous_第1页
计算机图形学colour-anonymous_第2页
计算机图形学colour-anonymous_第3页
计算机图形学colour-anonymous_第4页
计算机图形学colour-anonymous_第5页
已阅读5页,还剩87页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ColorModel

1

Outline

□Introduction

□Spectraldistributions

□SimpleModelfortheVisualSystem

□SimpleModelforanEmitterSystem

□GeneratingPerceivableColors

□C1E-RGBColorMatchingFunctions

2

Outline

□CIE-RGBChromaticitySpace

□CIE-XYZChromaticitySpace

□ConvertingBetweenXYZandRGB

□ColorGamutsandUndjsnlayableColorsy

□Summaryrendering:WhatToDoIn业」''

Practice

3

PrimitivesofColor

Thedifferentvisual

lightspectrum

distribution

lllumina+ion

stimulatetheeyes

andcausethecolor・Reflec+ance

perception

SpectralDistributions

□Radiometry(radiantpower,radianceetc)

■Measurementoflightenergy

□Photometry(luminanceetc)

■Measurementincludingresponseofvisualsystem

□Kn(X)/Xspectra1radiantpowerdistribution

□GenerallyC(X)definesspectralcolordistribution

Xe[%%J=Ac

□Incomputergraspuhsiuca^l)lyradiance.

5

SpectrumCharacterofColor

700nm400nm

1041061081(TMO121O141016101

>frequency(Hz)

-I~I_I~I~I_Il~I~F-wavelength(nm)

10151013101110910710510310110-1104

11

>।1\'HA\1

AMradio/microwave\ultraviolet\gammarays

FMradio,TVinfraredx-rays

6

ColorandWaveLength

Mostlightweseeisnotjustasinglewavelength,

butacombinationofmanywavelengthslikebelow.

Thisprofileisoftenreferredtoasaspectrum,or

spectralpowerdistribution.

7

ColorAsSpectralDistributions

8

SpectrumEfficiencyCurve

Q

A

o

u

e

p

E

e

s

n

o

u

E

n

l

e

z

D

eI

d

9

HumanColorPerception

■TheHumanRetina

-Theeyeisbasicallyjustacamera

-Eachneuroniseitherarodoxacone.

-Rodsarenotsensitivetocolor,butthecones

are!

10

LightIntensityandBrightness

■Intensitydescriesthephysicalamountofenergy,

brightnessdescribesourperceptionofthisenergy;

■Ourperceptionoflightisfunctionofoureyes,

whichperformsnumerousunconscious

correctionsandmodifications.Forexample,the

equaldensitiesofcoloredlightareperceivedas

beingofdifferentbrightnessdependingonthe

color.

11

MonochromaticLight(PureColor)

□6(1)=0,九wOO

□f5(X)dX=1/

□Jb⑴f(x-t)dt=f(x)

□C(X)=5(X-Xo)isspectraldistributionforpure

colorwithwavelengthXo

12

VisibleSpectrum

13

收工INVISIBLE

SUN

SchematicRepresentation

ofColorSpectra

EARTH

ColorSpace

□Spaceofallvisiblecolor^^quivalenttosetof

allfunctionsC:A—R

■C(X)>OallXI-J

■C(X)>0someX(atleast

□(Cardinalityofthisspaceis2C)

15

Perceptionand

TheSixthSense5Movie

□Wedonot'see9C(X)directlybutasfiltered

throughvisualsystem.

□Twodifferentpeople/animalswil「see'<(R)

differently.

□DifferentC(九)scanappearexactlythesametoone

individual(metamer).

□(Ignoringall'higherlevefprocessing,which

basicallyindicates66weseewhatweexpecttosee").

16

InfinitetoFinite

□Colorspaceisinfinitedimensional

□Visualsystemfilterstheenergydistribution

throughafinitesetofchannels

□Constructsafinitesignalspace(retinallevel)

□Throughopticnervetohigherorderprocessing

(visualcortex).

17

ASimpleModelforVisualSystem

OPTIC

NERVE

HumanEyeSchematic18

PhotosensitiveReceptors

□Rods-130,000,000nightvision+

peripheral(scotopic)

□Cones-5-7,000,000,daylightvision+

acuity(onepointonly)(Photopic)

□Cones

19

LMSResponseCurves

□I=fc(X)L(X)dX

□m=fc(X)M(X)dX

□s=fC(X)S(X)dX

口C—(trichromati£jheory)

□LMS(C)=(l,m5)

□LMS(Ca)=LMS(Cb)thenCa,Cbare

metamers.

20

2-degreeconenormalised

responsecurves

D(

OU

cs—10

n10

o.20

)J',0

^0

Ao,8

usw.460

o20

'so

p0

。o

d。.03

s456oo78

0000000000

wavelength(nm)

21

SimpleModelforanEmitter

System

□Generateschromaticlightbymixingstreams

ofenergyoflightofdifferentspectral

distributions

□Finitenumber(>=3)andindependent

22

Primaries(Basis)foranEmitter

□CE(九)=%E[仇)+a2E2(X)+(X3E3(九)

□Ejaretheprimaries(formabasis)

□以arecalled\h^^tensitiep

□CIE-RGBPrimariesare:

■ER仇)=5(X-,R),九R=700nm

■EG(X)=3(九-九G),九G=546.Inm

■EB(X)=8(X-九B),九B=435.8nm

23

ComputingTheIntensities

□ForagivenC(X)problemistofindthe

intensities必suchthatCE(X)ismetamericto

CQ).

□FirstMethodtobeshownisn'tused,but

illustrativeoftheproblem.

24

ColorMatchingFunctions

□PreviousmethodreliedonknowingL,M,

andSresponsecurvesaccurately.

□Bettermethodbasedoncolormatching

functions.

□Definehowtogetthecolormatching

functions%Q)relativetoagivensystemof

primaries.

25

CIEColorMatchingExperiments

S

2

S

3

OdC

w

i

mi

OBSERVER

26

ColorMatchingExperiment

Mixingof3primaries

Targetcolor

overlap

Adjustintensitiestomatchthecolor

27

2-degreeRGBColorMatching

Functions

3o

.5

39o

2o

2.5o

A.0

1.5o

*so

u1.0

.5o

ol).0

u0.o

一0.

-0.50300350400450TOO550600650700750800

-1.00

wavelengthnm

28

ColorMetamer

Agivencolorthatweperceivedmatcheswith

unlimitedspectrumdistributions.Thisphenomenais

calledmetamer.Sothespectrumcannotbeusedas

coiorTneMcThestrategyistochoosethesimplist

spectrumtorepresentaspecificcolor.

29

___________RGBM2del

Acolorwecanperceivedcanbesynthesizedbyany

threepurecolorsthatmeetcertainrequirements.

Thesethreebasiccolorsarecalledprimitives.The

quiteoftenusedprimitivesareRed、Greenand

Blue。

30

⑴Colorspaceis3D,thethreestimulicanbe

dominantwavelength,saturation,and

intensity,orred,greenandblue;

(2)Anycolorcanberepresentedbytristimulus,

iftheyareredgreenandblue,then

C(C)=R(R)+G(G)+B(B)

31

H.GrassmannLaw

(3)Propertiesofcolormixingj

C3.1)iftwocolor

q(C)=R|(R)+O(G)+B[(B)

C2(C)=R2(R)+G2(G)+B2(B)aremixed,thentheresult

is:

C3(C)=(R1+R2)(R)+(G1+G2)(G)+(B1+B2)(B)

32

H.GrassmannLaw

C3.2)ifthetristimulusofcolorC(C)=

R(R)+G(G)+B(B)arescaledthesamektimes,then

thecolorwillalsobescaledktimes,thatis:

kC(C)=kR(R)+kG(G)+kB(B)

(3.3)ifC](Q=CCCJ,C2(C)=CfCJthen

C《)=C2(C)

(4Jthecolorspaceiscontinuous.33

C1E-RGBChromaticitySpace

□ConsiderCIE-RGBprimaries:

■ForeachC(X)thereisapoint(aR,aG,aB):

CQ)pOCRERQ)+aGEG(X)+aBEB(X)

■Consideringallsuchpossiblepoints

口(aR,aG,aB)

■Resultsin3DRGBcolorspace

■Hardtovisualisein3D

■soweMlfinda2Drepresentationinstead.

34

C1E-RGBChromaticitySpace

□Consider1stonlymonochromaticcolors:

■C(X)=3仇-九c)

□LettheCIE-RGBmatchingfunctionsbe

■rQ),gQ),b(九)厂

□Then,eg,(

■aR(X0)=f5(X-九0)r(X)dX=r(X0)'

□Generally

■(aR%),aG(Z0),aB(X0))=(r(X0),g&),b(X0))

35

C1E-RGBChromaticitySpace

□As九0variesoverallwavelengths

■(r(X0),g(X0),b(X0))sweepsouta3Dcurve.

□Thiscurvegivesthemetamerintensitiesfor

allmonochromaticcolors.

□Tovisualisethiscurve,conventionally

projectontotheplane

aR+aG+aB=1

36

C1E-RGBChromaticitySpace

□Itiseasytoshowthatprojectionof

(OIR,OCG,otB)onto+ocG+otB=1is:

■(0CR/D,01c/D,aB/D),

□D=aR+aG+aB

□Showthatinteriorandboundaryofthe

curvecorrespondtovisiblecolors.

□C1E-RGBchromaticityspace.

37

C1E-RGBChromaticityDiagram

38

C1E-RGBChromaticity

□Define:

■VQ)=bj(.+b2M(X)+b3S(X)

□Specificconstantsbjresultsin

■Spectralluminousefficiencycurve

□OverallresponseofvisualsystemtoC(X)

■L(C)=KfC(X)V(X)dX

□ForK=680lumens/watt,andCasradiance,

calledthemin(candelaspersquaremetre)

39

SpectralLuminousEfficiency

Function

40

8-8壬+D-y+fdH(D)q■

6□

YP(Y>(Y)司8:

ypsAsfujy+

YP(Y)>(sfuFdn§□

UOIIJL□

gd8H+SD山£+(Y)/"au■

2P二pluojlo8D&JU

LuminanceandChrominance

口L(C)=aRlR+aGlG+aBlB

■andlRlG1Bareconstants

□Considersetofall(aR,aG,aB)satisfyingthis

equation...

■aplaneofconstantluminanceinRGBspace

□OnlyonepointonplanecorrespondstocolorC

■sowhatisvarying?

□Chrominance

■Thepartofacolor(hue)abstractingawaythe

luminance

□color=chrominance+luminance(independent)

42

LuminanceandChrominance

□Considerplaneofconstantluminance

■OR+aG+apk=L

□Leta*=(a,,a%,a,))beapointonthisplane.

■(ta,,toe,,ta'%),t>0isalinefrom0througha"

□Luminanceisincreasing(tL)butprojectionon

aR+aG+otB=1isthesame.

□ProjectiononaR+aG+aB=1isawayof

providing2Dcoordsystemforchrominance.

43

ChangeofBasis

□EandFaretwodifferentprimaries

■C(X)«oc1E](入)+a2E2(X)+a3E3(X)

■^(1)+32F2(x)+P3F3(X)

□LetAbethematrixthatexpressesFintermsofE

■FQ)=AEQ)

□Then

■oc=pA

■YEj(X)=XiyFi(X)(CMFs)

44

CalculateTheTristimulus

Thinkoverthequestionofhowtocalculatethe

tristimulusofanexperimentallight.Wecansee

fromthematchingexperimentthat,whenRGBis

usedtomatchagivenwavelengthpurelight,the

tristimulusaredetermined.Foranyexperiment

lightwitharbitraryspectrumdistribution,wecan

giveafactortoeverywavelengh,andthensum

thethreestimuli.

45

Calculatethetristimulus

R=f:P(2)r-(2)J2=Z770P(2)r―(2)

G=C:7V)g-----⑷曲大尸770(㈤-g----(㈤

-770―

B=J8:P(2)Z?(2)J2=ZP(2)/;(2)

46

ExampleofColorCalculation

43.10

-

n

t

e

n

s

t一

y

1

0.8263

0.6027

380460540620700

435.8546.1700

wavelength47

ExampleofColorCalculation

R=尸(435.8)/(435.8)+尸(546.1)・r(546.1)+P(700)-r(700)

G=P(435.8)•g(435.8)+P(546.1)•g(546.1)+P(700)-g(700)

B=P(435.8)•b(435.8)+P(546.1)・仇546.1)+P(700)・3(700)

7?=43.10x0.0232=1

G=0.8263xL2102=l

5=0.6027x1.6592=1

CalculateIntensity

y=P(435.8)-V(435.8)

+尸(546.1)・V(546.1)

A

O

M

+P(700)-7(700)O

I

O

E

O

s

=0.6027x0.01779n

o

c

E-

+0.8263x0.9834z

、4

/

4M

-o

+43.10x0.0041aQ

=12

00i।--------1--------11r-...........I

1300400500600700800

Wavelengtti(nm)

HSVModel

Whenweusethewavelength,theproportion

ofwhitelightinthegivenlight,theintensityto

describeacolor,acolorsystemofHSVCHug,

50

CIEColorSpace

Inordertoachievearepresentationwhichusesonlypositivemixingcoefficients,

theCIE("CommissionInternationaled'Eclairage")definedthreenewhypothetical

lightsources,x,y,andz,whichyieldpositivematchingcurves:

•Definedin1931todescribethefullspaceofperceptiblecolors

•Revisionsnowusedbycolorprofessionals

•Cannotproducetheprimaries-neednegativelight!

C1E-XYZChromaticitySpace

□CIE-RGBrepresentationnotideal

■colorsoutside1stquadrantnotachievable

■NegativeCMFfunctionranges

□CIEderivedadifferentXYZbasiswithbetter

mathamaticalbehaviour

■X(九),Y(九),Z(X)basisfunctions(imaginaryprimaries)

■X,Zhavezeroluminance

■CMFforYisspectralluminousefficiencyfunctionV

□KnownmatrixAfortransformationtoCIE-RGB

52

C1E-RGBChromaticityDiagram

53

CIE-XYZSystem

■CIE-RGBhasnegtivecoordinates;

■ChooseaXYZtriangletosurroundallthe

spectrumcurves;

■Makethesidesclosewithspectrumcurves;

■ChooseprimitiveYtorepresentintentsity;

54

CIEChromaticityDiagram

■Normalized

AmountsofXand

YforColorsin

VisibleSpectrum

55

C1E-XYZSpace

■Irregular3Dvolumeshapeis

difficulttounderstand

■Chromaticitydiagram(the

samecolorofthevarying

intensity,Y,shouldallendup

atthesamepoint)

x—____x____

X+Y+Z

Y

y~

X+Y+Z

56

CIEXYZChromaticityCoordinates

x

X+Y+Z

y

x+y+z

z

x+Y+z

57

UseCIEChromaticityDiagram

ToDetermineaColor

Tonguelikecontourlinerepresentsallthevisible

lights'wavelengthtrails,thefigurebesidethe

contouristhewavelengthofthevisiblelight.The

linesegmentthatconnectsthetwoendsofthetrailis

calledpurpleline,representsthemixedcolorthat

synthesizedbythepurelightsatthetwoends.The

areainsidethetonguerepresentsallthecolorsthat

canbeproducedbythereallight.Thenormalized

whitelightlocateat(0.333,0.333J.

58

CalculateUsingCIE

Chromaticitypiagram

UseCIEchromaticityDiagramcalculatethe

dominantwavelength;

■Calculatesaturation;

Determinethecolor-givetheintensityY;

59

ExampleofCalculation

Let。](玉,y,乂),02(%2,为,毛)themixedcolor

C12(%12,必2,乂2)isG2=(X1+X2)+(Y+H)+(Z]+Z2)

thenbasedonthex,y,zequeation.wederive

thecoordinatesofC12:

玉7]+xj?yZ+2

X\2,>12

T^T2

60

CIEChromaticityDiagram

Define三院司用忠阁辱率=&stenni隹

©OIOF◎。国BlernentarvDomff喀郡的触普揖厢出

GamutsandPs拄犀

61

CalculateXYZtristimulus

7-----770-----

xIf80°P(2)x(2)t/2=EP(2)x(2)

■:0PU)yU)-----〃=#Q7)70y(9------

z=篮尸⑷-z---(2)"=Z770P(2)z----(-2)

62

CalculateMatchingFunction

■Howtocalculatecolormatching

functionx(X),y(X),z(九)?

63

I9

U2o

O«l!—

W;+-p>

s

U二

o

S

RU』

Oq

YJ

Uo

3-j

So

J

1U

oU

S

PJO(((

dI

一NNN

gQ①)))

4.z

II>2Z

e

PU+++

x」q

(((

2J7(

NNN

①e①))))

m

。p(

S(((

u

P」①S+++

(

s(二;(

3NN——(

NON

))))

二U

,XKH

>SHK

oOI

PeH'PH"

j(J』((

D、

NON7

)))

uJoO2/

i£s。(

CalculateMatchingFunction

FromEquation:y(2)=V(2),weobtain:

7(2)=受4)V(A)

y(4)

7(^)=v(2)

Z(A)=Z(A)V(2)

y(2)

65

2-degXYZColorMatching

Functions

2

1.5

1

0.5

o

300

-0.5

wavelengthnm

66

C1E-XYZChromaticitySpace

□CQ)2X.X(X)+Y.Y(九)+乙Z(九)

■X=fC(X)x(X)dX

■Y=fC(X)y(X)dX[luminance]

■Z=fC(X)z(X)dX

■x,y,zaretheCMFs

67

YSystem:EBU(PAL/SECAM)

Primaryilluminants(X,Y)

0.9Red:0,6400,0,3300

Green:0,2900,0,6000

Blue:0.1500,0.0600

0.8一point(X,Y):0327,0.3221

51fl

0.7

CIE-XYZ505

Chromaticity0.6

Diagram

0.5

0.3

0.2

0.1

ConvertingBetweenXYZandRGB

□SystemhasprimariesRQ),G(X),BQ)

□Howtoconvertbetweenacolorexpressedin

RGBandviceversa?

□Derivation...

69

ColorGamutsand

Undisplayablecolors

□DisplayhasRGBprimaries,withcorresponding

XYZcolorsCR,CG,CB

□ChromaticitiescR,cG,cBwillformtriangleon

CIE-XYZdiagram

□Allpointsinthetrianglearedisplayablecolors

■formingthecolorgamut

70

SomeColorGamuts

00.40.8

ClEx

UndisplayableColors

□SupposeXYZcolorcomputed,butnot

displayable?

□Terminology

■Dominantwavelength

■Saturation

72

ColorMightNotBeDisplayable

□Fallsoutsideofthetriangle(itschromaticity

notdisplayableonthisdevice)

■Mightdesaturateit,moveitalonglineQWuntil

insidegamut(sodominantwavelengthinvariant)

□colorwithluminanceoutsideofdisplayable

range.

■ClipvectorthroughtheorigintotheRGBcube

(chrominanceinvariant)

73

XYZW什hWh什ePoint

ForcoloratP

•Qdominantwave

•WP/WQsaturation

RGBcolorCube

white

sreen

75

RGBCubeMappedtoXYZSpace

RGBfXYZConversion

■Nowdeterminethelineartransformationwhich

mapsRGBtristimulusvaluestoXYZvalues.

■Thismatrixisdifferentforeachmonitor(i.e.

differentmonitorphosphors).

■Monitorshaveafiniteluminancerange(typically100

cd/m2),whereasXYZspaceisunbounded

■Needtobeconcernedwiththedisplayofbright

sources(e.g.thesun)

■tonemapping:reproducingtheimpressionofbrightness

onadeviceoflimitedluminancebandwidth.

77

RGBfXYZConversion

RecalllinearrelationshipbetweenXYZandRGB

spaces:

x“11ai3R

Ya22G

zB

■Linearsystemcanbesolvedifpositionsof3colors

areknowninbothspaces.

■Sometimesmanufacturersprovidetristimulus

valuesformonitorphosphors=(Xr,Yr,Zr)(X,Y,

Zg)痴Yb,Zb)78

RGBfXYZConversion

■Solutionofthelinearsystem:

Note:「尺[「i[「X[

G=0nY=匕

B0ZZr

■...andsimilarlyforG=1andB=1.79

XYZfRGBConversion

■Theoppositetransformationisgivenbythe

inverseoftheoriginalRGBtoXYZmatrix:

°XYZ=MRGBTXYZCRGB

CRGB~MRGBfXYZ^XYZ

■WecanthusdetermineanRGBvalue

associatedwiththeXYZvaluedetermined

earlierfromF(l)

80

XYZfRGBConversion

■UsuallyXYZtristimulusvaluesforeachphosphor

notprovided.

■Manufacturersprovidethechromaticityco­

ordinatesofthephosphorsandthewhitepoint

(colorwhenR=G=B=1):

(%,%)(乙,几)(/,%)(/,凡)

■...finallyweneedtoknowtheluminanceofthe

whitepointgivenasYw

V

Let纥=+匕+nxr=--

Er

^Xr=xrErYr=yrErZr=(l-xr-yr)Er

XYZfRGBConversion

■Similarconditionsholdfor(Xg,Yg,Zg)and

阳,丫〃ZJ

■ThereforetheonlyunknownsareE,Eand

一rog

E

X\rXgEgxhEhR

y=yrErybEhG

Z」[_(l-xr-yr)Er(1—与―儿)纥(1—%一券闽

X.1

■...butwealsorequirethat:匕M1

z”,1

82

XYZfRGBConversion

■Firstweneedtodetermine(Xw,Yw,Zw)

given鼠,yw,Yw):

匕Y

=Xw+%+Zw=-

x卬+%+z卬几

X

4=>Xw="(Xw+%+zJ

Xw+匕+Zw

YY

and

・..alsoZw=(l-xw-yw)^

ywyw

83

XYZfRGBConversion

■TodeterminevaluesforEr,EgandEbweobservethat

Xg

X「xX",

ifR+G+B=Wthen+y.+

yr4匕

0ZgZgZ”,

•••Xw=Xr+Xg+Xb=xrEr+XgEg+xbEb

...andsimilarlyforYwandZwleadingtoanewlinear

systeminnounknownsthereforewecansolveforEr,

「Xx

EgandEb:xw%b

Eg

匕%yb

xxEb

Zw0-r0~g~yg)(1一4一%)

84

SharingColorsBetweenMon什ors

■Ifwewishtoguaranteethatacoloronmonitor1

looksthesameasonmonitor

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论