




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市宝山区罗店中学2023-2024学年数学高一上期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.若则一定有A. B.C. D.2.已知函数则值域为()A. B.C. D.3.已知命题,,命题,,则下列命题中为真命题的是()A. B.C. D.4.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.满足2,的集合A的个数是A.2 B.3C.4 D.86.已知函数表示为设,的值域为,则()A., B.,C., D.,7.下列函数中,既是偶函数又在单调递增的函数是()A. B.C. D.8.设集合,,,则()A. B.C. D.9.下列函数中,在上单调递增的是()A. B.C. D.10.已知直线的方程为,则该直线的倾斜角为A. B.C. D.11.用a,b,c表示空间中三条不同的直线,γ表示平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,a∥c,则b∥c;③若a∥γ,b∥γ,则a∥b其中真命题的序号是()A.①② B.③C.①③ D.②12.“x=”是“sinx=”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题(本大题共4小题,共20分)13.已知,若对一切实数,均有,则___.14.如下图所示,三棱锥外接球的半径为1,且过球心,围绕棱旋转后恰好与重合.若,则三棱锥的体积为_____________.15.已知函数若函数有三个不同的零点,且,则的取值范围是____16.已知角的终边过点,则_______三、解答题(本大题共6小题,共70分)17.已知,且.(1)求的值;(2)求的值.18.已知,是方程的两根.(1)求实数的值;(2)求的值;(3)求的值.19.计算下列各式的值(1);(2)已知,求20.已知函数,(其中)(1)求函数的值域;(2)如果函数在恰有10个零点,求最小正周期的取值范围21.已知函数,(1)求函数的最大值;(2)若,,求的值22.已知函数(1)求函数图象的相邻两条对称轴的距离;(2)求函数在区间上的最大值与最小值,以及此时的取值
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】本题主要考查不等关系.已知,所以,所以,故.故选2、C【解析】先求的范围,再求的值域.【详解】令,则,则,故选:C3、D【解析】先判断命题的真假,再利用复合命题的真假判断得解.【详解】解:方程的,故无解,则命题p为假;而,故命题q为真;故命题、、均为假命题,为真命题.故选:D4、A【解析】解绝对值不等式求解集,根据充分、必要性的定义判断题设条件间的充分、必要关系.【详解】由,可得,∴“”是“”的充分而不必要条件.故选:A.5、C【解析】由条件,根据集合的子集的概念与运算,即可求解【详解】由题意,可得满足2,的集合A为:,,,2,,共4个故选C【点睛】本题主要考查了集合的定义,集合与集合的包含关系的应用,其中熟记集合的子集的概念,准确利用列举法求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题6、A【解析】根据所给函数可得答案.【详解】根据题意得,的值域为.故选:A.7、B【解析】由奇偶性排除,再由增减性可选出正确答案.【详解】项为奇函数,项为非奇非偶函数函数,为偶函数,项中,在单减,项中,在单调递增.故选:B8、D【解析】根据交集、补集的定义计算可得;【详解】解:集合,,,则故选:D9、B【解析】利用基本初等函数的单调性可得出合适的选项.【详解】函数、、在上均为减函数,函数在上为增函数.故选:B.10、B【解析】直线的斜率,其倾斜角为.考点:直线的倾斜角.11、D【解析】因为空间中,用a,b,c表示三条不同的直线,①中正方体从同一点出发的三条线,满足已知但是a⊥c,所以①错误;②若a∥b,b∥c,则a∥c,满足平行线公理,所以②正确;③平行于同一平面的两直线的位置关系可能是平行、相交或者异面,所以③错误;故选D12、A【解析】根据充分不必要条件的定义可得答案.【详解】当时,成立;而时得(),故选:A【点睛】本题考查充分不必要条件判断,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含二、填空题(本大题共4小题,共20分)13、【解析】列方程组解得参数a、b,得到解析式后,即可求得的值.【详解】由对一切实数,均有可知,即解之得则,满足故故答案:14、【解析】作于,可证得平面,得,得等边三角形,利用是球的直径,得,然后计算出,再应用棱锥体积公式计算体积【详解】∵围绕棱旋转后恰好与重合,∴,作于,连接,则,,∴又过球心,∴,而,∴,同理,,,由,,,得平面,∴故答案为:【点睛】易错点睛:本题考查求棱锥的体积,解题关键是作于,利用旋转重合,得平面,这样只要计算出的面积,即可得体积,这样作图可以得出,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转,即为.旋转是旋转形成的二面角为.应用作出二面角的平面角15、;【解析】作图可知:点睛:利用函数零点情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.16、【解析】由三角函数定义可直接得到结果.【详解】的终边过点,故答案为:.三、解答题(本大题共6小题,共70分)17、(1);(2).【解析】(1)利用同角三角函数的基本关系可求得的值;(2)利用诱导公式以及弦化切可求得结果.【小问1详解】解:因为,且,则为第三象限角,故,因此,.【小问2详解】解:原式.18、(1);(2);(3)【解析】(1)根据方程的根与系数关系可求,,然后结合同角平方关系可求,(2)结合(1)可求,,结合同角基本关系即可求,(3)利用将式子化为齐次式,再利用同角三角函数的基本关系,将弦化切,代入可求【详解】解:(1)由题意可知,,,∴,∴,∴,(2)方程的两根分别为,,∵,∴,∴,,则,(3)【点睛】本题主要考查了同角三角函数关系式和万能公式的应用,属于基本知识的考查19、(1)(2)1【解析】(1)根据对数和指数幂的运算性质计算即可得出答案.(2)利用诱导公式化简目标式,然后分子分母同时除以,代入即可得出答案.【小问1详解】原式=;【小问2详解】原式=.20、(1)(2)【解析】(1)利用两角和与差的正弦函数、二倍角公式化简,将化为只含有一个三角函数的形式,然后利用三角函数性质求解;(2)将在恰有10个零点变为在在恰有10个解的问题,列出相应不等式即可求解.【小问1详解】,由,得,可知函数的值域为,【小问2详解】令,即,所以函数在恰有10个零点,即在在恰有10个解,设的最小正周期为,则,解得,即最小正周期的取值范围时.21、(1)3(2)【解析】(1)利用倍角公式和辅助角公式化简,结合三角函数性质作答即可.(2)利用换元法求解即可.【小问1详解】函数令解得∴当,时,函数取到最大值3.【小问2详解】∵,∴设,则22、(1);(2)时,取得最大值为3;当时,取得最小值为【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 职场技能更新迭代研究考核试卷
- 教育学心理学试题及答案
- 副校长兼高二年级组长讲话学生高考决战在高三决胜在高二抓住了高二就抓住了高考
- 攀枝花仁和区2025年八年级《语文》上学期期末试题与参考答案
- 智能制造共享技术与产业升级补充协议
- 童趣表情包IP授权与动画制作合同
- 药品进口代理与供应链管理服务合同
- 普及型教育机构招生专员派遣合同
- 建筑施工安全与质量保证协议
- 离婚协议份数要求与生效程序规定的财产分配合同
- 数字修约考试题及答案
- 山东大学《军事理论》考试试卷及答案解析
- 面向非结构化文本的事件关系抽取关键技术剖析与实践
- 《国别和区域研究专题》教学大纲
- 2025年日历表含农历(2025年12个月日历-每月一张A4可打印)
- 《ESC血压升高和高血压管理2024指南》解读
- 学科竞赛在提升学生团队协作能力中的作用
- 《公共管理学基础》题库及答案
- 基本药物工作计划
- 2025年行政执法人员执法资格考试必考题库及答案(共232题)
- 2025手术室年度工作计划
评论
0/150
提交评论