版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省宝鸡市清姜路中学2023-2024学年数学九上期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,AB是⊙O直径,若∠AOC=100°,则∠D的度数是()A.50° B.40° C.30° D.45°2.一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定3.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=4,cos∠ABC=,则BD的长为()A.2 B.4 C.2 D.44.如图,在平行四边形中,为延长线上一点,且,连接交于,则△与△的周长之比为()A.9:4 B.4:9C.3:2 D.2:35.如图,四边形内接于,若,则()A. B. C. D.6.如图,两个反比例函数和在第一象限内的图象依次是C1和C2,设点P在C1上,轴于点C,交C2于点A,轴于点D,交C2于点B,则四边形PAOB的面积为()A.2 B.3 C.4 D.57.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是().A.x<﹣4或x>2 B.﹣4≤x≤2 C.x≤﹣4或x≥2 D.﹣4<x<28.如图,二次函数的图象经过点,下列说法正确的是()A. B. C. D.图象的对称轴是直线9.方程化为一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是()A.5,6,-8 B.5,-6,-8 C.5,-6,8 D.6,5,-810.下列二次函数中,顶点坐标为(-5,0),且开口方向、形状与y=-x2的图象相同的是()A.y=(x-5)2 B.y=x2-5 C.y=-(x+5)2 D.y=(x+5)2二、填空题(每小题3分,共24分)11.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB'交CD于点E,若AB=3cm,则线段EB′的长为_____.12.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.13.如图一次函数的图象分别交x轴、y轴于A、B,P为AB上一点且PC为△AOB的中位线,PC的延长线交反比例函数的图象于Q,,则Q点的坐标为_____________14.如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.15.若正六边形的边长为2,则此正六边形的边心距为______.16.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是_____.17.如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,那么EH的长为___.18.如图,在平行四边形中,点在边上,,连接交于点,则的面积与四边形的面积之比为___三、解答题(共66分)19.(10分)如图,于点,为等腰直角三角形,,当绕点旋转时,记.(1)过点作交射线于点,作射线交射线于点.①依题意补全图形,求的度数;②当时,求的长.(2)若上存在一点,且,作射线交射线于点,直接写出长度的最大值.20.(6分)为落实立德树人的根本任务,加强思改、历史学科教师的专业化队伍建设.某校计划从前来应聘的思政专业(一名研究生,一名本科生)、历史专业(一名研究生、一名本科生)的高校毕业生中选聘教师,在政治思想审核合格的条件下,假设每位毕业生被录用的机会相等(1)若从中只录用一人,恰好选到思政专业毕业生的概率是:(2)若从中录用两人,请用列表或画树状图的方法,求恰好选到的是一名思政研究生和一名历史本科生的概率.21.(6分)我市有2000名学生参加了2018年全省八年级数学学业水平测试.其中有这样一题:如图,分别以线段BD的端点B、D为圆心,相同的长为半径画弧,两弧相交于A、C两点,连接AB、AD、CB、CD.若AB=2,BD=2,求四边形ABCD的面积.统计我市学生解答和得分情况,并制作如下图表:(1)求学业水平测试中四边形ABCD的面积;(2)请你补全条形统计图;(3)我市该题的平均得分为多少?(4)我市得3分以上的人数为多少?22.(8分)解方程:(1)(配方法)(2)23.(8分)(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在中,,是外一点,且,求的度数.若以点为圆心,为半径作辅助,则、必在上,是的圆心角,而是圆周角,从而可容易得到=________.(2)(问题解决)如图2,在四边形中,,,求的度数.(3)(问题拓展)如图3,是正方形的边上两个动点,满足.连接交于点,连接交于点,连接交于点,若正方形的边长为2,则线段长度的最小值是_______.24.(8分)在平面直角坐标系中,抛物线与轴的交点为A,B(点A在点B的左侧).(1)求点A,B的坐标;(2)横、纵坐标都是整数的点叫整点.①直接写出线段AB上整点的个数;②将抛物线沿翻折,得到新抛物线,直接写出新抛物线在轴上方的部分与线段所围成的区域内(包括边界)整点的个数.25.(10分)如图(1),某数学活动小组经探究发现:在⊙O中,直径AB与弦CD相交于点P,此时PA·PB=PC·PD(1)如图(2),若AB与CD相交于圆外一点P,上面的结论是否成立?请说明理由.(2)如图(3),将PD绕点P逆时针旋转至与⊙O相切于点C,直接写出PA、PB、PC之间的数量关系.(3)如图(3),直接利用(2)的结论,求当PC=,PA=1时,阴影部分的面积.26.(10分)如图,一次函数y=﹣x+2的图象与反比例函数y=﹣的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.(1)求A、B两点的坐标;(2)求△ABC的面积.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据∠AOB=180°,∠AOC=100°,可得出∠BOC的度数,最后根据圆周角∠BDC与圆心角∠BOC所对的弧都是弧BC,即可求出∠BDC的度数.【详解】解:∵AB是⊙O直径,∴∠AOB=180°,∵∠AOC=100°,∴∠BOC=∠AOB-∠AOC=80°;∵所对的圆周角是∠BDC,圆心角是∠BOC,∴;故答案选B.【点睛】本题考查同圆或等圆中,同弧或等弧所对的圆周角是圆心角的一半,在做题时遇到已知圆心角,求圆周角的度数,可以通过计算,得出相应的圆心角的度数,即可得出圆周角的度数.2、A【解析】先求出△的值,再根据一元二次方程根的情况与判别式△的关系即可得出答案.【详解】解:一元二次方程中,△,则原方程有两个不相等的实数根.故选:A.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△方程有两个不相等的实数根;(2)△方程有两个相等的实数根;(3)△方程没有实数根3、D【分析】由锐角三角函数可求∠ABC=60°,由菱形的性质可得AB=BC=4,∠ABD=∠CBD=30°,AC⊥BD,由直角三角形的性质可求BO=OC=2,即可求解.【详解】解:∵cos∠ABC=,∴∠ABC=60°,∵四边形ABCD是菱形,∴AB=BC=4,∠ABD=∠CBD=30°,AC⊥BD,∴OC=BC=2,BO=OC=2,∴BD=2BO=4,故选:D【点睛】此题主要考查三角函数的应用,解题的关键是熟知菱形的性质及解直角三角形的方法.4、C【分析】由题意可证△ADF∽△BEF可得△ADF与△BEF的周长之比=,由可得,即可求出△ADF与△BEF的周长之比.【详解】∵四边形ABCD是平行四边形,∴,AD=BC,∵∴即∵,∴△ADF∽△BEF∴△ADF与△BEF的周长之比=.故选:C.【点睛】本题考查了相似三角形的性质和判定,平行四边形的性质,利用相似三角形周长的比等于相似比求解是解本题的关键.5、C【分析】根据圆内接四边形对角互补可得∠C=180°×=105°.【详解】∵∠A+∠C=180°,∠A:∠C=5:7,∴∠C=180°×=105°.故选:C.【点睛】此题主要考查了圆内接四边形,关键是掌握圆内接四边形对角互补.6、B【解析】试题分析:∵PC⊥x轴,PD⊥y轴,∴S矩形PCOD=4,S△AOC=S△BOD=×1=,∴四边形PAOB的面积=S矩形PCOD-S△AOC-S△BOD=4--=1.故选B.考点:反比例函数系数k的几何意义.7、D【分析】由抛物线与x轴的交点及对称轴求出另一个交点坐标,根据抛物线开口向下,根据图象求出使函数值y>0成立的x的取值范围即可.【详解】∵二次函数y=ax1+bx+c(a<0)的图象经过点(1,0),且其对称轴为x=﹣1,∴二次函数的图象与x轴另一个交点为(﹣4,0),∵a<0,∴抛物线开口向下,则使函数值y>0成立的x的取值范围是﹣4<x<1.故选D.8、D【分析】根据抛物线与y轴交点的位置即可判断A选项;根据抛物线与x轴有两个交点即可判断B选项;由图象可知,当x=1时,图象在x轴的下方可知,故C错误;根据图象经过点两点,即可得出对称轴为直线.【详解】解:A、由图可知,抛物线交于y轴负半轴,所以c<0,故A错误;B、由图可知,抛物线与x轴有两个交点,则,故B错误;C、由图象可知,当x=1时,图象在x轴的下方,则,故C错误;D、因为图象经过点两点,所以抛物线的对称轴为直线,故D正确;故选:D.【点睛】本题考查了二次函数图象与系数的关系,解题的关键是掌握二次函数的图象和性质.9、C【分析】先将该方程化为一般形式,即可得出结论.【详解】解:先将该方程化为一般形式:.从而确定二次项系数为5,一次项系数为-6,常数项为8故选C.【考点】此题考查的是一元二次方程的项和系数,掌握一元二次方程的一般形式是解决此题的关键.10、C【分析】根据二次函数的顶点式:y=a(x-m)2+k,即可得到答案.【详解】顶点坐标为(-5,0),且开口方向、形状与y=-x2的图象相同的二次函数解析式为:y=-(x+5)2,故选:C.【点睛】本题主要考查二次函数的顶点式,掌握二次函数的顶点式y=a(x-m)2+k,其中(m,k)是顶点坐标,是解题的关键.二、填空题(每小题3分,共24分)11、1cm【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而求出AD,DE,AE的长,则EB′的长可求出.【详解】解:由旋转的性质可知:AC=AC',∵D为AC'的中点,∴AD=AC,∵ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴∠DAE=30°,∵AB=CD=3cm,∴AD=cm,∴DE=1cm,∴AE=2cm,∵AB=AB'=3cm,∴EB'=3﹣2=1cm.故答案为:1cm.【点睛】此题考查了旋转的性质,含30度直角三角形的性质,解直角三角形,熟练掌握旋转的性质是解本题的关键.12、【解析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是,故答案为:.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13、(2,)【解析】因为三角形OQC的面积是Q点的横纵坐标乘积的一半,所以可求出k的值,PC为中位线,可求出C的横坐标,也是Q的横坐标,代入反比例函数可求出纵坐标【详解】解:设A点的坐标为(a,0),B点坐标为(0,b),
分别代入,解方程得a=4,b=-2,
∴A(4,0),B(0,-2)∵PC是△AOB的中位线,
∴PC⊥x轴,即QC⊥OC,
又Q在反比例函数的图象上,
∴2S△OQC=k,
∴k=2×=3,
∵PC是△AOB的中位线,
∴C(2,0),
可设Q(2,q)∵Q在反比例函数的图象上,
∴q=,
∴点Q的坐标为(2
,
).点睛:本题考查反比例函数的综合运用,关键是知道函数上面取点后所得的三角函数的面积和点的坐标之间的关系.14、1.【分析】由已知角相等,加上公共角,得到三角形ABD与三角形ACB相似,由相似得比例,将AB与AD长代入即可求出CD的长.【详解】在△ABD和△ACB中,∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴,∵AB=6,AD=4,∴,则CD=AC﹣AD=9﹣4=1.【点睛】考点:相似三角形的判定与性质.15、.【分析】连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.【详解】连接OA、OB、OC、OD、OE、OF,∵正六边形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:OM=.16、【解析】如图,过点O作OC⊥AB的延长线于点C,则AC=4,OC=2,在Rt△ACO中,AO=,∴sin∠OAB=.故答案为.17、【详解】解:如图所示:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴,解得:x=,则EH=.故答案为.【点睛】本题考查相似三角形的判定与性质;矩形的性质.18、【分析】由DE:EC=3:1,可得DF:FB=3:4,根据在高相等的情况下三角形面积比等于底边的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面积与四边形BCEF的面积的比值.【详解】解:连接BE
∵DE:EC=3:1
∴设DE=3k,EC=k,则CD=4k
∵ABCD是平行四边形
∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4
∵DE:EC=3:1
∴S△BDE:S△BEC=3:1
设S△BDE=3a,S△BEC=a
则S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴则△DEF的面积与四边形BCEF的面积之比9:19
故答案为:.【点睛】本题考查了平行线分线段成比例,平行四边形的性质,关键是运用在高相等的情况下三角形面积比等于底边的比求三角形的面积比值.三、解答题(共66分)19、(1)①见解析,45°②7;(2)见解析,【分析】(1)①作于点H,交的延长线于点,证明∆AHO≌∆AGB,即可求得∠ODC的度数;②延长交于点,利用条件可求得AK、OK的长度,于是可求OD的长;(2)分析可知,点B在以O为圆心,OB为半径的圆上运动(个圆),所以当PB是圆O的切线时,PQ的值最大,据此可解.【详解】解:(1)①补全图形如图所示,过点作于点H,交的延长线于点,∵,,,∴∠AGB=∠AHO=∠C=,∴∠GAH=,∴∠OAH+∠HAB=∠GAB+∠HAB=,∴∠OAH=∠GAB,四边形为矩形,∵为等腰直角三角形,∴OA=AB,∴∆AHO≌∆AGB,∴AH=AG,∴四边形为正方形,∴∠OCD=45°,∴∠ODC=45°;②延长交于点,∵,OA=5,∴AK=4,∴OK=3,∵∠ODC=45°,∴DK=AK=4∴;(2)如图,∵绕点旋转,∴点B在以O为圆心,OB为半径的圆上运动(个圆),∴当PB是圆O的切线时,PQ的值最大,∵∴∴∠OPB=45°,∴OQ=OP=10,∴.∴长度的最大值是.【点睛】本题考查了与旋转有关的计算及圆的性质,作辅助线构造全等三角形、分析出点的运动轨迹是解题关键.20、(1);(2)恰好选到的是一名思政研究生和一名历史本科生的概率为.【解析】(1)由概率公式即可得出结果;
(2)设思政专业的一名研究生为A、一名本科生为B,历史专业的一名研究生为C、一名本科生为D,画树状图可知:共有12个等可能的结果,恰好选到的是一名思政研究生和一名历史本科生的结果有2个,即可得出结果.【详解】(1)若从中只录用一人,恰好选到思政专业毕业生的概率是;故答案为:;(2)设思政专业的一名研究生为A、一名本科生为B,历史专业的一名研究生为C、一名本科生为D,画树状图如图:共有12个等可能的结果,恰好选到的是一名思政研究生和一名历史本科生的结果有2个,∴恰好选到的是一名思政研究生和一名历史本科生的概率为.故答案为:【点睛】本题考查了列表法与树状图法以及概率公式;根据题意画出树状图是解题的关键.21、(1);(2)见解析;(3)3.025分;(4)1578人.【分析】(1)根据作图得到AC是BD的垂直平分线,利用勾股定理可求得的长,从而求得答案;(2)根据条形统计图中的数据可以补全条形统计图;(3)根据平均数计算公式计算即可.(4)计算得3分与得4分的人数和即可.【详解】(1)如图,连接AC交BD于E,根据作图:分别以线段BD的端点B、D为圆心,相同的长为半径画弧,两弧相交于A、C两点,∴AC是BD的垂直平分线,且AB=CB、AD=CD,∴AB=CB=AD=CD.在中,AB=2,,∴,∴;(2)由条形统计图:,如图:(3)由条形统计图:得2分的人数有:(人),得3分的人数有:(人),得4分的人数有:(人),∴平均得分为:(分).(4)由(3)的计算得:=1578(人).【点睛】本题考查的是条形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.22、(1);(2).【分析】(1)方程整理配方后,开方即可求出解;(2)把方程整理后左边进行因式分解,求方程的解【详解】(1),方程整理得:,配方得:,即,开方得:,解得:;(2),移项得:,提公因式得:,即,∴或,解得:.【点睛】本题主要考查了解一元二次方程-配方法、因式分解法,熟练掌握一元二次方程的各种解法是解题的关键.23、(1)45;(2)25°;(3)【解析】(1)利用同弦所对的圆周角是所对圆心角的一半求解.(2)由A、B、C、D共圆,得出∠BDC=∠BAC,(3)根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.【详解】(1)如图1,∵AB=AC,AD=AC,∴以点A为圆心,点B、C、D必在⊙A上,∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,∴∠BDC=∠BAC=45°,故答案是:45;(2)如图2,取BD的中点O,连接AO、CO.∵∠BAD=∠BCD=90°,∴点A、B、C、D共圆,∴∠BDC=∠BAC,∵∠BDC=25°,∴∠BAC=25°;(3)在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°−90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD=,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD−OH=−1.【点睛】本题主要考查了圆的综合题,需要掌握垂径定理、圆周角定理、等腰直角三角形的性质以及勾股定理等知识,难度偏大,解题时,注意辅助线的作法.24、(1)点A的坐标为(-1,0),点B的坐标为(3,0)(2)①5;②6.【分析】(1)根据x轴上的点的坐标特征即y=0,可得关于x的方程,解方程即可;(2)①直接写出从-1到3的整数的个数即可;②先确定新抛物线的解析式,进而可得其顶点坐标,再结合函数图象解答即可.【详解】解:(1)在中,令y=0,,解得:,∴点A的坐标为(-1,0),点B的坐标为(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鱼塘扭转合同模板
- 聘雇合同范例
- 2024年度保姆生活照料服务合同范本2篇
- 钢管销售合同范例
- 外贸海运运输合同范例
- 2024墓园墓位销售与纪念活动策划合同3篇
- 2024全新时尚主题婚礼场地租赁合同3篇
- 2024年店铺经营权交换合同3篇
- 隧道施工分包合同范例
- 闲置渔具赠送合同范例
- 应用写作-终结性考核-国开(SC)-参考资料
- 2025年慢性阻塞性肺疾病全球创议GOLD指南修订解读课件
- 同步课件1:新时代中国特色社会主义的伟大成就
- 世界舞台上的中华文明智慧树知到期末考试答案章节答案2024年重庆大学
- 学校2024-2025年工作计划
- 人文英语4写作
- 广东佛山生育保险待遇申请表
- 家长会家校沟通主题班会
- PPP跟踪审计方案
- 等比数列的前n项和PPT课件
- 120-1阀讲义(完整版)
评论
0/150
提交评论