




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西韩城2023-2024学年数学高一上期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.条件p:|x|>x,条件q:,则p是q的()A.充要条件 B.既不充分也不必要条件C.必要不充分条件 D.充分不必要条件2.已知定义域为的函数满足:,且,当时,,则等于()A B.C.2 D.43.设,,,则a,b,c的大小关系是()A. B.C. D.4.函数,则下列坐标表示的点一定在函数图像上的是A. B.C. D.5.若角的终边经过点,且,则()A.﹣2 B.C. D.26.若且,则函数的图象一定过点()A. B.C. D.7.已知直线x+3y+n=0在x轴上的截距为-3,则实数n的值为()A. B.C. D.8.已知函数,且,则()A. B.C. D.9.已知函数的图像是连续的,根据如下对应值表:x1234567239-711-5-12-26函数在区间上的零点至少有()A.5个 B.4个C.3个 D.2个10.()A B.C. D.11.已知集合,则=A. B.C. D.12.已知函数,则的零点所在区间为A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知幂函数f(x)的图象过点(4,2),则f=________.14.若,,三点共线,则实数的值是__________15.已知f(x)=mx3-nx+1(m,n∈R),若f(-a)=3,则f(a)=______16.函数的定义域为D,给出下列两个条件:①对于任意,当时,总有;②在定义域内不是单调函数.请写出一个同时满足条件①②的函数,则______________.三、解答题(本大题共6小题,共70分)17.已知平面向量,,,且,.(1)求和:(2)若,,求向量与向量夹角的大小.18.对于等式,如果将视为自变量,视为常数,为关于(即)的函数,记为,那么,是幂函数;如果将视为常数,视为自变量,为关于(即)的函数,记为,那么,是指数函数;如果将视为常数,视为自变量为关于(即)的函数,记为,那么,是对数函数.事实上,由这个等式还可以得到更多的函数模型.例如,如果为常数(为自然对数的底数),将视为自变量,则为的函数,记为(1)试将表示成的函数;(2)函数的性质通常指函数的定义域、值域、单调性、奇偶性等,请根据你学习到的函数知识直接写出该函数的性质,不必证明.并尝试在所给坐标系中画出函数的图象19.已知函数.(1)求函数的周期和单调递减区间;(2)将的图象向右平移个单位,得到的图象,已知,,求值.20.已知直线经过点(1)若点在直线上,求直线的方程;(2)若直线与直线平行,求直线的方程21.已知函数f(x)=(1)若f(x)有两个零点x1、x2,且x1(2)若命题“∃x∈R,fx≤-722.已知是同一平面内的三个向量,其中(1)若,且,求:的坐标(2)若,且与垂直,求与夹角
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】解不等式得到p:,q:或,根据推出关系得到答案.【详解】由得:,所以p:,而,解得:或,故q:或,因为或,且或,故p是q的充分不必要条件故答案为:D2、A【解析】根据函数的周期性以及奇偶性,结合已知函数解析式,代值计算即可.【详解】因为函数满足:,且,故是上周期为的偶函数,故,又当时,,则,故.故选:A.3、C【解析】先判断,再判断得到答案.【详解】;;;,即故选:【点睛】本题考查了函数值的大小比较,意在考查学生对于函数性质的灵活运用.4、D【解析】因为函数,,所以,所以函数为偶函数,则、均在在函数图像上.故选D考点:函数的奇偶性5、D【解析】根据三角函数定义得到,计算得到答案.【详解】故选:【点睛】本题考查了三角函数定义,属于简单题.6、C【解析】令求出定点的横坐标,即得解.【详解】解:令.当时,,所以函数的图象过点.故选:C.7、B【解析】根据题意,分析可得点(﹣3,0)在直线x+3y+n=0上,将点的坐标代入直线方程,计算可得答案【详解】根据题意,直线x+3y+n=0在x轴上的截距为﹣3,则点(﹣3,0)在直线x+3y+n=0上,即(﹣3)×+n=0,解可得:n=3;故选B【点睛】本题考查直线的一般式方程以及截距的计算,关键是掌握直线一般方程的形式,属于基础题8、B【解析】构造函数,判断的单调性和奇偶性,由此化简不等式,即得.【详解】∵函数,令,则,∴的定义域为,,所以函数为奇函数,又,当增大时,增大,即在上递增,由,可得,即,∴,∴,即.故选:B.9、C【解析】利用零点存在性定理即可求解.【详解】函数的图像是连续的,;;,所以在、,之间一定有零点,即函数在区间上的零点至少有3个.故选:C10、A【解析】由根据诱导公式可得答案.【详解】故选:A11、B【解析】分析:化简集合,根据补集的定义可得结果.详解:由已知,,故选B.点睛:本题主要一元二次不等式的解法以及集合的补集运算,意在考查运算求解能力.12、B【解析】根据函数的零点判定定理可求【详解】连续函数在上单调递增,,,的零点所在的区间为,故选B【点睛】本题主要考查了函数零点存在定理的应用,熟记定理是关键,属于基础试题二、填空题(本大题共4小题,共20分)13、【解析】根据图象过点的坐标,求得幂函数解析式,再代值求得函数值即可.【详解】设幂函数为y=xα(α为常数).∵函数f(x)的图象过点(4,2),∴2=4α,∴α=,∴f(x)=,∴f=.故答案为:.【点睛】本题考查幂函数解析式的求解,以及幂函数函数值的求解,属综合简单题.14、5【解析】,,三点共线,,即,解得,故答案为.15、【解析】直接证出函数奇偶性,再利用奇偶性得解【详解】由题意得,所以,所以为奇函数,所以,所以【点睛】本题是函数中的给值求值问题,一般都是利用函数的周期性和奇偶性把未知的值转化到已知值上,若给点函数为非系非偶函数可试着构造一个新函数为奇偶函数从而求解16、【解析】根据题意写出一个同时满足①②的函数即可.【详解】解:易知:,上单调递减,上单调递减,故对于任意,当时,总有;且在其定义域上不单调.故答案为:.三、解答题(本大题共6小题,共70分)17、(1),;(2).【解析】(1)本题首先可根据、得出,然后通过计算即可得出结果;(2)本题首先可根据题意得出以及,然后求出、以及的值,最后根据向量的数量积公式即可得出结果.【详解】(1)因为,,,且,,所以,解得,故,.(2)因为,,所以,因为,,所以,,,,设与的夹角为,则,因为,所以,向量与向量的夹角为.【点睛】本题考查向量平行、向量垂直以及向量的数量积的相关性质,若、且,则,考查通过向量的数量积公式求向量的夹角,考查计算能力,是中档题.18、(1),(,)(2)答案见解析【解析】(1)结合对数运算的知识求得.(2)根据的解析式写出的性质,并画出图象.【小问1详解】依题意因为,,两边取以为底的对数得,所以将y表示为x的函数,则,(,),即,(,);【小问2详解】函数性质:函数的定义域为,函数值域,函数是非奇非偶函数,函数的在上单调递减,在上单调递减函数的图象:19、(1),(2)【解析】(1)首先利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质计算可得;(2)首先根据三角函数的平移变换规则求出的解析式,根据,得到,再根据同角三角函数的基本关系求出,最后根据两角和的余弦公式计算可得;【小问1详解】解:∵,即,所以函数的最小正周期,令,解得.故函数的单调递减区间为.【小问2详解】解:由题意可得,∵,∴,∵,所以,则,因此.20、(1)(2)【解析】(1)利用两点式求得直线的方程.(2)利用点斜式求得直线的方程.【小问1详解】∵直线经过点,且点在直线上,∴由两点式方程得,即,∴直线的方程为【小问2详解】若直线与直线平行,则直线的斜率为,∵直线经过点,∴直线的方程为,即21、(1)a=±1;(2)-2,2.【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年地理学科核心素养考察模拟试卷及详解(核心素养提升)
- 2025年小学语文毕业升学考试全真模拟卷(综合素养提升版)-小学语文综合性学习案例分析试题
- 2025年中学教师资格考试《综合素质》教育研究方法教育评价题解析(含答案)
- 成衣代加工合同范本
- 铜丝销售购销合同范本
- 建筑施工英文合同范本
- 水泵电机维修合同范本
- 骨病科周记护理
- 业主拍照物业合同范本
- 2025年银川货运从业资格证题库及答案
- 数字经济学导论-完整全套课件
- 形位公差及标注教程
- 妊娠合并梅毒孕产妇入院后处理流程
- 长阳区域构造
- 公路水运工程施工企业(主要负责人和安全生产管理人员)考核大纲及模拟题库
- 计算机在材料学中综合作业
- 建设项目办理用地预审与选址意见书技术方案
- 2019年辽宁省普通高考志愿填报表(一)
- x-y数控工作台机电系统设计
- 北京中医药大学个人自荐信
- 工程交付使用表
评论
0/150
提交评论