版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市经开第一学校2023年九年级数学第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,、、、是上的四点,,,则的度数是()A. B. C. D.2.如果反比例函数y=kx的图像经过点(-3,-A.第一、二象限 B.第一、三象限C.第二、四象限 D.第三、四象限3.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影(圆形).已知灯泡距离地面2.4m,桌面距离地面0.8m(桌面厚度忽略不计),若桌面的面积是1.2m²,则地面上的阴影面积是()A.0.9m² B.1.8m² C.2.7m² D.3.6m²4.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5% B.20% C.15% D.10%5.如图,若二次函数的图象的对称轴为,与x轴的一个交点为,则:①二次函数的最大值为;②;③当时,y随x的增大而增大;④当时,,其中正确命题的个数是()A.1 B.2 C.3 D.46.若不等式组无解,则的取值范围为()A. B. C. D.7.如图,将两张长为10,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么,菱形周长的最大值为()A. B. C. D.218.如图,AD是的一条角平分线,点E在AD上.若,,则与的面积比为()A.1:5 B.5:1 C.3:20 D.20:39.如图,直线y1=kx+b过点A(0,3),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是().A. B. C. D.1<x<210.如图,点,,都在上,若,则为()A. B. C. D.11.两直线a、b对应的函数关系式分别为y=2x和y=2x+3,关于这两直线的位置关系下列说法正确的是A.直线a向左平移2个单位得到b B.直线b向上平移3个单位得到aC.直线a向左平移个单位得到b D.直线a无法平移得到直线b12.点A(-2,1)关于原点对称的点A'的坐标是()A.(2,1) B.(-2,-1) C.(-1,2) D.(2,-1)二、填空题(每题4分,共24分)13.绕着A点旋转后得到,若,,则旋转角等于_____.14.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于______.15.如图,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,恰好能与△ACP′完全重合,如果AP=8,则PP′的长度为___________.16.如图,、、均为⊙的切线,分别是切点,,则的周长为____.17.若=,则=__________.18.在相同时刻,物高与影长成正比.在某一晴天的某一时刻,某同学测得他自己的影长是2.4m,学校旗杆的影长为13.5m,已知该同学的身高是1.6m,则学校旗杆的高度是_____.三、解答题(共78分)19.(8分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为40米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为102平方米,求x;(2)若使这个苗圃园的面积最大,求出x和面积最大值.20.(8分)如图,在中,,,垂足分别为,与相交于点.(1)求证:;(2)当时,求的长.21.(8分)在△ABC中,∠ACB=90°,AB=20,BC=1.(1)如图1,折叠△ABC使点A落在AC边上的点D处,折痕交AC、AB分别于Q、H,若则HQ=.(2)如图2,折叠使点A落在BC边上的点M处,折痕交AC、AB分别于E、F.若FM∥AC,求证:四边形AEMF是菱形;(3)在(1)(2)的条件下,线段CQ上是否存在点P,使得和相似?若存在,求出PQ的长;若不存在,请说明理由.22.(10分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.762.463.665.966.468.569.169.369.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.23.(10分)已知抛物线的顶点为,且过点.直线与轴相交于点.(1)求该抛物线的解析式;(2)以线段为直径的圆与射线相交于点,求点的坐标.24.(10分)如图,正方形、等腰的顶点在对角线上(点与、不重合),与交于,延长线与交于点,连接.(1)求证:.(2)求证:(3)若,求的值.25.(12分)如图,为的直径,、为上两点,,,垂足为.直线交的延长线于点,连接.(1)判断与的位置关系,并说明理由;(2)求证:.26.解方程:.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据垂径定理得,结合和圆周角定理,即可得到答案.【详解】∵,∴,∵,∴.故选:A.【点睛】本题主要考查垂径定理和圆周角定理,掌握垂径定理和圆周角定理是解题的关键.2、B【解析】根据反比例函数图象上点的坐标特点可得k=12,再根据反比例函数的性质可得函数图象位于第一、三象限.【详解】∵反比例函数y=kx的图象经过点(-3,-4∴k=-3×(-4)=12,∵12>0,∴该函数图象位于第一、三象限,故选:B.【点睛】此题主要考查了反比例函数的性质,关键是根据反比例函数图象上点的坐标特点求出k的值.3、C【分析】根据桌面与地面阴影是相似图形,再根据相似图形的性质即可得到结论.【详解】解:如图设C,D分别是桌面和其地面影子的圆心,CB∥AD,∴∴而OD=2.4,CD=0.8,∴OC=OD-CD=1.6,∴这样地面上阴影部分的面积为故选C.【点睛】本题考查了相似三角形的应用,根据相似图形的面积比等于相似比的平方,同时考查相似图形的对应高之比等于相似比,掌握以上知识是解题的关键.4、D【分析】设定期一年的利率是x,则存入一年后的本息和是5000(1+x)元,取3000元后余[5000(1+x)﹣3000]元,再存一年则有方程[5000(1+x)﹣3000]•(1+x)=2750,解这个方程即可求解.【详解】设定期一年的利率是x,根据题意得:一年时:5000(1+x),取出3000后剩:5000(1+x)﹣3000,同理两年后是[5000(1+x)﹣3000](1+x),即方程为[5000(1+x)﹣3000]•(1+x)=2750,解得:x1=10%,x2=﹣150%(不符合题意,故舍去),即年利率是10%.故选:D.【点睛】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和=本金×(1+利率×期数),难度一般.5、B【分析】①根据二次函数的图象可知,时,二次函数取得最大值,将代入二次函数的解析式即可得;②根据时,即可得;③根据二次函数的图象即可知其增减性;④先根据二次函数的对称性求出二次函数的图象与x轴的另一个交点坐标,再结合函数图象即可得.【详解】由二次函数的图象可知,时,二次函数取得最大值,将代入二次函数的解析式得:,即二次函数的最大值为,则命题①正确;二次函数的图象与x轴的一个交点为,,则命题②错误;由二次函数的图象可知,当时,y随x的增大而减小,则命题③错误;设二次函数的图象与x轴的另一个交点为,二次函数的对称轴为,与x轴的一个交点为,,解得,即二次函数的图象与x轴的另一个交点为,由二次函数的图象可知,当时,,则命题④正确;综上,正确命题的个数是2,故选:B.【点睛】本题考查了二次函数的图象与性质(对称性、增减性、最值)等知识点,熟练掌握二次函数的图象与性质是解题关键.6、A【分析】求出第一个不等式的解集,根据口诀:大大小小无解了可得关于m的不等式,解之可得.【详解】解不等式,得:x>8,∵不等式组无解,∴4m≤8,解得m≤2,故选A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7、C【分析】画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【详解】解:当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,在Rt△ABC中,由勾股定理:x2=(10﹣x)2+22,解得:x=,∴4x=,即菱形的最大周长为cm.故选:C.【点睛】此题考查矩形的性质,本题的解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.8、C【分析】根据已知条件先求得S△ABE:S△BED=3:2,再根据三角形相似求得S△ACD=S△ABE=S△BED,根据S△ABC=S△ABE+S△ACD+S△BED即可求得.【详解】解:∵AE:ED=3:2,
∴AE:AD=3:5,
∵∠ABE=∠C,∠BAE=∠CAD,
∴△ABE∽△ACD,
∴S△ABE:S△ACD=9:25,
∴S△ACD=S△ABE,
∵AE:ED=3:2,
∴S△ABE:S△BED=3:2,
∴S△ABE=S△BED,
∴S△ACD=S△ABE=S△BED,
∵S△ABC=S△ABE+S△ACD+S△BED=S△BED+S△BED+S△BED=S△BED,
∴S△BDE:S△ABC=3:20,
故选:C.【点睛】本题考查了相似三角形的判定和性质,不同底等高的三角形面积的求法等,等量代换是本题的关键.9、C【分析】先把A点代入y+kx+b得b=3,再把P(1,m)代入y=kx+3得k=m−3,接着解(m−3)x+3>mx−2得x<,然后利用函数图象可得不等式组mx>kx+b>mx−2的解集.【详解】把P(1,m)代入y=kx+3得k+3=m,解得k=m−3,解(m−3)x+3>mx−2得x<,所以不等式组mx>kx+b>mx−2的解集是1<x<.故选:C.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.10、D【分析】直接根据圆周角定理求解.【详解】∵∠C=34°,
∴∠AOB=2∠C=68°.
故选:D.【点睛】此题考查圆周角定理,解题关键在于掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.11、C【分析】根据上加下减、左加右减的变换规律解答即可.【详解】A.直线a向左平移2个单位得到y=2x+4,故A不正确;B.直线b向上平移3个单位得到y=2x+5,故B不正确;C.直线a向左平移个单位得到=2x+3,故C正确,D不正确.故选C【点睛】此题考查一次函数与几何变换问题,关键是根据上加下减、左加右减的变换规律分析.12、D【解析】根据两个点关于原点对称时,它们的横纵坐标符号相反,即可求解.【详解】解:点A(-2,1)关于原点对称的点A'的坐标是(2,-1).
故选:D.【点睛】本题主要考查了关于原点对称点的性质,正确把握横纵坐标的关系是解题关键.二、填空题(每题4分,共24分)13、50°或210°【分析】首先根据题意作图,然后由∠BAC′=130°,∠BAC=80°,即可求得答案.【详解】解:∵∠BAC′=130°,∠BAC=80°,
∴如图1,∠CAC′=∠BAC′-∠BAC=50°,
如图2,∠CAC′=∠BAC′+∠BAC=210°.
∴旋转角等于50°或210°.
故答案为:50°或210°.【点睛】本题考查了旋转的性质.注意掌握数形结合思想与分类讨论思想的应用.14、2:1.【解析】过点O作OE⊥AB于点E,延长EO交CD于点F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根据相似三角形对应高的比等于相似比可得,由此即可求得答案.【详解】如图,过点O作OE⊥AB于点E,延长EO交CD于点F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴=,故答案为:2:1.【点睛】本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题的关键.15、【分析】通过旋转的性质可以得到,,,从而可以得到是等腰直角三角形,再根据勾股定理可以计算出的长度.【详解】解:根据旋转的性质得:,∴是等腰直角三角形,∴∴∴故答案为:.【点睛】本题主要考查了旋转的性质以及勾股定理的应用,其中根据旋转的性质推断出是等腰直角三角形是解题的关键.16、1【分析】根据切线长定理得:EC=FC,BF=BD,AD=AE,再由△ABC的周长代入可求得结论.【详解】解:∵AD,AE、CB均为⊙O的切线,D,E,F分别是切点,
∴EC=FC,BF=BD,AD=AE,
∵△ABC的周长=AC+BC+AB=AC+CF+BF+AB,
∴△ABC的周长=AC+EC+BD+AB=AE+AD=2AD,
∵AD=5,
∴△ABC的周长为1.故答案为:1【点睛】本题主要考查了切线长定理,熟练掌握从圆外一点引圆的两条切线,它们的切线长相等.17、【解析】由比例的性质即可解答此题.【详解】∵,∴a=b,∴=,故答案为【点睛】此题考查了比例的基本性质,熟练掌握这个性质是解答此题的关键.18、9米【分析】由题意根据物高与影长成比例即旗杆的高度:13.5=1.6:2.4,进行分析即可得出学校旗杆的高度.【详解】解:∵物高与影长成比例,∴旗杆的高度:13.5=1.6:2.4,∴旗杆的高度==9米.故答案为:9米.【点睛】本题考查相似三角形的应用,解题的关键是理解题意,把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程并通过解方程求出旗杆的高度.三、解答题(共78分)19、(1)x=17;(2)当x=11米时,这个苗圃园的面积最大,最大值为198平方米.【分析】(1)根据题意列出方程,解出方程即可;(2)设苗圃园的面积为y平方米,用x表达出y,得到二次函数表达式,根据二次函数的性质,求出面积的最大值,注意考虑是否符合实际情况.【详解】(1)解:根据题意得:,解得:或,∵,∴,∴(2)解:设苗圃园的面积为y平方米,则y=x(40﹣2x)=﹣2x2+40x=∵二次项系数为负,∴苗圃园的面积y有最大值.∴当x=10时,即平行于墙的一边长是20米,20>18,不符题意舍去;∴当x=11时,y最大=198平方米;答:当x=11米时,这个苗圃园的面积最大,最大值为198平方米.【点睛】本题主要考察一元二次方程的实际问题及二次函数的实际问题,解题的关键是能够列出方程或函数表达式,熟练运用二次函数的性质解决实际问题.20、(1)证明见解析;(2).【分析】(1)只要证明∠DBF=∠DAC,即可判断.
(2)利用相似三角形的性质即可解决问题.【详解】(1),,,,,;(2)由,可得,,,.【点睛】本题考查了锐角三角函数的应用,相似三角形的性质和判定,同角的余角相等,直角三角形两锐角互余等知识,解题的关键是正确寻找相似三角形,利用相似三角形的性质解决问题.21、(1)2;(2)见解析;(3)存在,QP的值为或8或.【分析】(1)利用勾股定理求出AC,设HQ=x,根据构建方程即可解决问题;(2)利用对折与平行线的性质证明四边相等即可解决问题;(3)设AE=EM=FM=AF=2m,则BM=3m,FB=5m,构建方程求出m的值,分两种情形分别求解即可解决问题.【详解】解:(1)如图1中,在△ABC中,∵∠ACB=90°,AB=20,BC=1,∴AC==16,设HQ=x,∵HQ∥BC,∴=,∴,∴AQ=x,由对折得:∵∴×16×1=9××x×x,∴x=2或﹣2(舍弃),∴HQ=2,故答案为2.(2)如图2中,由翻折不变性可知:AE=EM,AF=FM,∠AFE=∠MFE,∵FM∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=MF=ME,∴四边形AEMF是菱形.(3)如图3中,设AE=EM=FM=AF=2m,则BM=3m,FB=5m,∴2m+5m=20,∴m=,∴AE=EM=,∴EC=AC﹣AE=16﹣=,∴CM=∵QH=2,AQ=,∴QC=,设PQ=x,当=时,,∴解得:,当=时,,∴解得:x=8或,经检验:x=8或是分式方程的解,且符合题意,综上所述,满足条件长QP的值为或8或.【点睛】本题考查的是三角形相似的判定与性质,菱形的判定与性质,轴对称的性质,锐角三角函数的应用,掌握以上知识是解题的关键.22、(1)17;(2)如图所示,见解析;(3)2.8;(4)①②.【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;
(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;
(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;
(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.【详解】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,
∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,
故答案为17;
(2)如图所示:
(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;
故答案为2.8;
(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,
①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;
②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;
故答案为①②.【点睛】本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.23、(1);(2)或【分析】(1)先设出抛物线的顶点式,再将点A的坐标代入可得出结果;(2)先求出射线的解析式为,可设点P的坐标为(x,x).圆与射线OA相交于两点,分两种情况:①如图1当时,构造和,再在直角三角形中利用勾股定理,列方程求解;②如图2,当时,构造和,再在直角三角形中利用勾股定理,列方程求解.【详解】解:(1)根据顶点设抛物线的解析式为:,代入点,得:,抛物线的解析式为:.设直线的解析式为:,分别代入和,得:,直线的解析式为:;(2)由(1)得:直线的解析式为,令,得,由题意可得射线的解析式为,点在射线上,则可设点,由图可知满足条件的点有两个:①当时,构造和,可得:如图1:由图可得,,,.在Rt△PMD中,,在Rt△PBG中,,在Rt△BMH中,,点在以线段为直径的圆上,,可得:,即:.整理,得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年餐饮配送行业食品安全责任合同3篇
- 二零二五版综合安全解决方案与保安劳务合同2篇
- 二零二五版搬家服务与物流数据共享合同样本3篇
- 二零二五版房地产代理销售合同示范文本解读3篇
- 二零二五年度水上乐园供水及排水系统承包合同2篇
- 二零二五版影视制作合同:规定电影制作的流程与投资分配3篇
- 二零二五年度食堂物流配送服务合同2篇
- 二零二五年特种车辆销售与操作培训服务合同3篇
- 二零二五版体育场馆承包经营合同模板2篇
- 二零二五版宝钢职工社会保障配套合同3篇
- 2024年水利工程高级工程师理论考试题库(浓缩400题)
- 淋巴瘤病理诊断基础和进展周小鸽
- 增强现实技术在艺术教育中的应用
- TD/T 1060-2021 自然资源分等定级通则(正式版)
- 《创伤失血性休克中国急诊专家共识(2023)》解读
- 仓库智能化建设方案
- 海外市场开拓计划
- 供应链组织架构与职能设置
- 幼儿数学益智图形连线题100题(含完整答案)
- 七上-动点、动角问题12道好题-解析
- 2024年九省联考新高考 数学试卷(含答案解析)
评论
0/150
提交评论