版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省咸阳市实验中学2023年九年级数学第一学期期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列图形,是轴对称图形,但不是中心对称图形的是()A. B. C. D.2.用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=93.已知圆锥的高为12,底面圆的半径为5,则该圆锥的侧面展开图的面积为()A.65π B.60π C.75π D.70π4.是关于的一元一次方程的解,则()A. B. C.4 D.5.如图,在菱形中,,,是的中点,将绕点逆时针旋转至点与点重合,此时点旋转至处,则点在旋转过程中形成的、线段、点在旋转过程中形成的与线段所围成的阴影部分的面积为()A. B. C. D.6.已知反比例函数图像上三个点的坐标分别是,能正确反映的大小关系的是()A. B. C. D.7.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数8.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cosB B.b=a•tanB C.b=c•sinB D.a=b•tanA9.下列方程中是关于x的一元二次方程的是()A. B.ax2+bx+c=0C.(x-1)(x+2)=1 D.3x2-2xy-5y2=010.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于()A.100sin35°米 B.100sin55°米 C.100tan35°米 D.100tan55°米二、填空题(每小题3分,共24分)11.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为m(结果保留根号).12.关于x的一元二次方程的一个根为1,则方程的另一根为______.13.如图,圆的直径垂直于弦,垂足是,,,的长为__________.14.如图,直线,若,则的值为_________15.反比例函数的图像的两支曲线分别位于第二、四象限内,则应满足的条件是_________.16.半径为5的圆内接正六边形的边心距为__________.17.如图,已知正方形OABC的三个顶点坐标分别为A(2,0),B(2,2),C(0,2),若反比例函数的图象与正方形OABC的边有交点,请写出一个符合条件的k值__________.18.已知Rt△ABC中,AC=3,BC=4,以C为圆心,以r为半径作圆.若此圆与线段AB只有一个交点,则r的取值范围为_____.三、解答题(共66分)19.(10分)如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以点O为圆心,OB为半径作圆,过点C作CD∥AB交⊙O于点D,连接BD(1)猜想AC与⊙O的位置关系,并证明你的猜想;(2)试判断四边形BOCD的形状,并证明你的判断;(3)已知AC=6,求扇形OBC所围成的圆锥的底面圆的半径r.20.(6分)如图,在平面直角坐标系中,反比例函数的图象过等边三角形的顶点,,点在反比例函数图象上,连接.(1)求反比例函数的表达式;(2)若四边形的面积是,求点的坐标.21.(6分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.22.(8分)如图,点是反比例函数图象上的一点,过点作轴于点,连接,的面积为1.点的坐标为.若一次函数的图象经过点,交双曲线的另一支于点,交轴点.(1)求反比例函数和一次函数的解析式;(1)若为轴上的一个动点,且的面积为5,请求出点的坐标.23.(8分)如图,在平面直角坐标系中,⊙C与y轴相切,且C点坐标为(1,0),直线过点A(—1,0),与⊙C相切于点D,求直线的解析式.24.(8分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:,,,,,)25.(10分)如图,已知二次函数y=ax1+4ax+c(a≠0)的图象交x轴于A、B两点(A在B的左侧),交y轴于点C.一次函数y=﹣x+b的图象经过点A,与y轴交于点D(0,﹣3),与这个二次函数的图象的另一个交点为E,且AD:DE=3:1.(1)求这个二次函数的表达式;(1)若点M为x轴上一点,求MD+MA的最小值.26.(10分)在平面直角坐标系中(如图),已知抛物线经过点,与轴交于点,,抛物线的顶点为点,对称轴与轴交于点.(1)求抛物线的表达式及点的坐标;(2)点是轴正半轴上的一点,如果,求点的坐标;(3)在(2)的条件下,点是位于轴左侧抛物线上的一点,如果是以为直角边的直角三角形,求点的坐标.
参考答案一、选择题(每小题3分,共30分)1、A【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C.是轴对称图形,是中心对称图形,不符合题意;D.是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.2、D【分析】先移项,再在方程两边都加上一次项系数一半的平方,即可得出答案.【详解】解:移项得:x2﹣4x=5,配方得:,(x﹣2)2=9,故选:D.【点睛】本题考查的知识点是用配方法解一元二次方程,掌握用配方法解一元二次方程的步骤是解此题的关键.3、A【分析】利用勾股定理易得圆锥的母线长,圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】∵圆锥的高为12,底面圆的半径为5,∴圆锥的母线长为:=13,∴圆锥的侧面展开图的面积为:π×13×5=65π,故选:A.【点睛】本题考查了圆锥侧面展开图的面积问题,掌握圆锥的侧面积公式是解题的关键.4、A【分析】先把x=1代入方程得a+2b=-1,然后利用整体代入的方法计算2a+4b的值【详解】将x=1代入方程x2+ax+2b=0,得a+2b=-1,2a+4b=2(a+2b)=2×(-1)=-2.故选A.【点睛】此题考查一元二次方程的解,整式运算,掌握运算法则是解题关键5、C【分析】根据菱形的性质可得AD=AB=4,∠DAB=180°-,AE=,然后根据旋转的性质可得:S△ABE=S△ADF,∠FAE=∠DAB=60°,最后根据S阴影=S扇形DAB+S△ADF―S△ABE―S扇形FAE即可求出阴影部分的面积.【详解】解:∵在菱形中,,,是的中点,∴AD=AB=4,∠DAB=180°-,AE=,∵绕点逆时针旋转至点与点重合,此时点旋转至处,∴S△ABE=S△ADF,∠FAE=∠DAB=60°∴S阴影=S扇形DAB+S△ADF―S△ABE―S扇形FAE=S扇形DAB―S扇形FAE==故选:C.【点睛】此题考查的是菱形的性质、旋转的性质和扇形的面积公式,掌握菱形的性质定理、旋转的性质和扇形的面积公式是解决此题的关键.6、B【分析】根据反比例函数关系式,把-2、1、2代入分别求出,然后比较大小即可.【详解】将A、B、C三点横坐标带入函数解析式可得,∵,∴.故选:B.【点睛】本题考查反比例函数图象上点的坐标,正确利用函数表达式求点的坐标是解题关键.7、C【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.8、A【分析】本题可以利用锐角三角函数的定义求解即可.【详解】解:在Rt△ABC中,∠C=90°,则tanA=,tanB=,cosB=,sinB=;因而b=c•sinB=a•tanB,a=b•tanA,错误的是b=c•cosB.故选:A.【点睛】本题考查三角函数的定义,熟记定义是解题的关键.9、C【分析】一元二次方程是指只含有一个未知数,且未知数的最高次数为2次的整式方程.根据定义即可求解.【详解】解:A选项含有分式,故不是;B选项中没有说明a≠0,则不是;C选项是一元二次方程;D选项中含有两个未知数,故不是;故选:C.【点睛】本题主要考查的是一元二次方程的定义,属于基础题型.解决这个问题的关键就是要明确一元二次方程的定义.10、C【分析】根据正切函数可求小河宽PA的长度.【详解】∵PA⊥PB,PC=100米,∠PCA=35°,∴小河宽PA=PCtan∠PCA=100tan35°米.故选C.【点睛】考查了解直角三角形的应用,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.二、填空题(每小题3分,共24分)11、【详解】解:∵∠ACB=30°,∠ADB=60°,
∴∠CAD=30°,
∴AD=CD=60m,
在Rt△ABD中,
AB=AD•sin∠ADB=60×=(m).故答案是:.12、-1【详解】设一元二次方程x2+2x+a=0的一个根x1=1,另一根为x2,则,x1+x2=-=-2,解得,x2=-1.故答案为-1.13、【分析】根据圆周角定理得,由于的直径垂直于弦,根据垂径定理得,且可判断为等腰直角三角形,所以,然后利用进行计算.【详解】解:∵∴∵的直径垂直于弦∴∴为等腰直角三角形∴∴.故答案是:【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14、【解析】先由得出,再根据平行线分线段成比例定理即可得到结论.【详解】∵,∴,∵a∥b∥c,∴=.故答案为:.【点睛】本题考查了平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键.15、【分析】根据反比例函数图象所在的象限求得,然后得到的取值范围即可.【详解】∵反比例函数的图象位于第二、四象限内,
∴,
则.故答案是:.【点睛】本题考查了反比例函数的图象的性质,重点是比例系数k的符号.16、【分析】连接OA、OB,作OH⊥AB,根据圆内接正六边形的性质得到△ABO是等边三角形,利用垂径定理及勾股定理即可求出边心距OH.【详解】如图,连接OA、OB,作OH⊥AB,∵六边形ABCDEF是圆内接正六边形,∴∠FAB=∠ABC=180-,∴∠OAB=∠OBA=60,∴△ABO是等边三角形,∴AB=OA=5,∵OH⊥AB,∴AH=2.5,∴OH=,故答案为:.【点睛】此题考查圆内接正六边形的性质,垂径定理,勾股定理.解题中熟记正六边形的性质得到∠FAB=∠ABC=120是解题的关键,由此即可证得△ABO是等边三角形,利用勾股定理解决问题.17、1(满足条件的k值的范围是0<k≤4)【分析】反比例函数上一点向x、y轴分别作垂线,分别交于y轴和x轴,则围成的矩形的面积为|k|,据此进一步求解即可.【详解】∵反比例函数图像与正方形有交点,∴当交于B点时,此时围成的矩形面积最大且为4,∴|k|最大为4,∵在第一象限,∴k为正数,即0<k≤4,∴k的取值可以为:1.故答案为:1(满足条件的k值的范围是0<k≤4).【点睛】本题主要考查了反比例函数中比例系数的相关运用,熟练掌握相关概念是解题关键.18、3<r≤1或r=.【解析】根据直线与圆的位置关系得出相切时有一交点,再结合图形得出另一种有一个交点的情况,即可得出答案.【详解】解:过点C作CD⊥AB于点D,∵AC=3,BC=1.∴AB=5,如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,当直线与圆相切时,d=r,圆与斜边AB只有一个公共点,∴CD×AB=AC×BC,∴CD=r=,当直线与圆如图所示也可以有一个交点,∴3<r≤1,故答案为3<r≤1或r=.【点睛】此题主要考查了直线与圆的位置关系,结合题意画出符合题意的图形,从而得出答案,此题比较容易漏解.三、解答题(共66分)19、(1)猜想:AC与⊙O相切;(2)四边形BOCD为菱形;(3)【解析】(1)根据等腰三角形的性质得∠A=∠ABC=30°,再由OB=OC得∠OCB=∠OBC=30°,所以∠ACO=∠ACB-∠OCB=90°,然后根据切线的判定定理即可得到,AC是⊙O的切线;(2)连结OD,由CD∥AB得到∠AOC=∠OCD,根据三角形外角性质得∠AOC=∠OBC+∠OCB=60°,所以∠OCD=60°,于是可判断△OCD为等边三角形,则CD=OB=OC,先可判断四边形OBDC为平行四边形,加上OB=OC,于是可判断四边形BOCD为菱形;(3)在Rt△AOC中,根据含30度的直角三角形三边的关系得到OC=,再根据弧长公式计算出弧BC的弧长=然后根据圆锥的计算求圆锥的底面圆半径.【详解】(1)AC与⊙O相切,∠ACB=120°,∴∠ABC=∠A=30°.,∠CBO=∠BCO=30°,∴∠OCA=120°-30°=90°,∴AC⊥OC,又∵OC是⊙O的半径,∴AC与⊙O相切.(2)四边形BOCD是菱形连接OD.∵CD∥AB,∴∠OCD=∠AOC=2×30°=60°,∴△COD是等边三角形,,∴四边形BOCD是平行四边形,∴四边形BOCD是菱形.,(3)在Rt△AOC中,∠A=30°,AC=6,ACtan∠A=6tan30°=,∴弧BC的弧长∴底面圆半径【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的判定方法和圆锥的计算.20、(1)(2)【解析】(1)先求出B的坐标,根据系数k的几何意义即可求得k=,从而求得反比例函数的表达式;(2)根据题意可,求出,再设,求出t,即可解答【详解】(1),反比例函数的表达式为(2)设【点睛】此题考查了反比例函数解析式,不规则图形面积.,解题关键在于求出B的坐标21、(1)见解析(2)6【分析】(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC.(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度.【详解】解:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC∴∠C+∠B=110°,∠ADF=∠DEC∵∠AFD+∠AFE=110°,∠AFE=∠B,∴∠AFD=∠C在△ADF与△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,∴△ADF∽△DEC(2)∵四边形ABCD是平行四边形,∴CD=AB=1.由(1)知△ADF∽△DEC,∴,∴在Rt△ADE中,由勾股定理得:22、(1),;(1)P(0,5)或(0,1).【分析】(1)根据“点A是反比例函数图象上的一点,过点A作AB⊥x轴于点B,连接OA,△AOB的面积为1”即可求得k的值,从而得到反比例函数的解析式,分别将点A和点D的坐标代入反比例函数的解析式,即可求得点A和点D的坐标,用待定系数法求出a和b的值,即能求得一次函数的解析式,
(1)△PAC可以分成△PAD和△PCD,分别求出点A和点C到y轴的距离,根据“△PAC的面积为5”,求出PD的长度,结合点D的坐标,求出点P的坐标即可.【详解】解:(1)根据题意得:
k=-1×1=-4,
即反比例函数的解析式为,解得:
m=4,n=-1,
即点A(-1,4),点C(4,-1),
把点A(-1,4),C(4,-1)代入y=ax+b得:,解得:,即一次函数的解析式为:y=-x+3,
(1)把x=0代入y=-x+3得:y=3,
即点D(0,3),
点A到y轴的距离为1,点C到y轴的距离为4,
S△PAD=×PD×1=PD,
S△PCD=×PD×4=1PD,
S△PAC=S△PAD+S△PCD=PD=5,
PD=1,
∵点D(0,3),
∴点P的坐标为(0,1)或(0,5).【点睛】本题考查了反比例函数与一次函数的交点问题,根据题意和图示找出正确的等量关系式解决本题的关键.23、或.【详解】解:如图所示,连接CD,∵直线为⊙C的切线,∴CD⊥AD.∵C点坐标为(1,0),∴OC=1,即⊙C的半径为1,∴CD=OC=1.又∵点A的坐标为(—1,0),∴AC=2,∴∠CAD=30°,在Rt△AOB中,,即,设直线l解析式为:y=kx+b(k≠0),则解得∴直线l的函数解析式为,同理可得,当直线l在x轴的下方时,直线l的函数解析式为.故直线l的函数解析式为或.【点睛】这是一道圆与直角坐标系的综合题,求直线的解析式,通常用待定系数法(知道图象上两个点的坐标即可),题目已给出点A的坐标,再求出一个点即可,抓住点D是直线与⊙C的切点,由C点坐标为(1,0)及圆的性质易求点B的坐标为(0,),由点A和点B的坐标易求直线的解析式24、【分析】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论.【详解】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×,∴BE=EF-BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×,∴AB=AE+BE=+≈139m,答:木栈道AB的长度约为139m.【点睛】本题考查解直角三角形-方向角问题,解题的关键是学会添加常用辅助线.构造直角三角形解决问题.25、(1);(1).【分析】(1)先把D点坐标代入y=﹣x+b中求得b,则一次函数解析式为y=﹣x﹣3,于是可确定A(﹣6,0),作EF⊥x轴于F,如图,利用平行线分线段成比例求出OF=4,接着利用一次函数解析式确定E点坐标为(4,﹣5),然后利用待定系数法求抛物线解析式;(1)作MH⊥AD于H,作D点关于x轴的对称点D′,如图,则D′(0,3),利用勾股定理得到AD=3,再证明Rt△AMH∽Rt△ADO,利用相似比得到MH=AM,加上MD=MD′,MD+MA=MD′+MH,利用两点之间线段最短得到当点M、H、D′共线时,MD+MA的值最小,然后证明Rt△DHD′∽Rt△DOA,利用相似比求出D′H即可.【详解】解:(1)把D(0,﹣3)代入y=﹣x+b得b=﹣3,∴一次函数解析式为y=﹣x﹣3,当y=0时,﹣x﹣3=0,解得x=﹣6,则A(﹣6,0),作EF⊥x轴于F,如图,∵OD∥EF,∴==,∴OF=OA=4,∴E点的横坐标为4,当x=4时,y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 整栋住宅买卖合同3篇
- 挂名股东合作合同的3篇
- 敬业精神保证书样本3篇
- 授权代理加盟合同3篇
- 挂名购车免责协议书3篇
- 招标项目的设计邀请函撰写3篇
- 临时餐饮服务租赁与供应协议
- 剧院花园施工合同样本
- 住宅区翻新工程协议
- 住宅小区KV配电站新建合同
- 2022年江苏小高考生物试题(含答案)
- 游戏王统一规则
- 五年级上册数学课件-9.3 多边形的面积(复习)丨苏教版 (共15张PPT)
- 员工培训记录虫害人员
- 外科学教案-下肢骨关节损伤
- 系统集成类项目施工组织计划方案
- ASME-B16.5标准法兰尺寸表
- 质量工具与方法试题及答案
- 一体化综合指挥平台(应急指挥部分)建设方案
- 《金融工程原理-无套利均衡分析》笔记01
- 工程项目收尾管理办法
评论
0/150
提交评论