上海市上海外国语大学附中2023-2024学年高一数学第一学期期末教学质量检测模拟试题含解析_第1页
上海市上海外国语大学附中2023-2024学年高一数学第一学期期末教学质量检测模拟试题含解析_第2页
上海市上海外国语大学附中2023-2024学年高一数学第一学期期末教学质量检测模拟试题含解析_第3页
上海市上海外国语大学附中2023-2024学年高一数学第一学期期末教学质量检测模拟试题含解析_第4页
上海市上海外国语大学附中2023-2024学年高一数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市上海外国语大学附中2023-2024学年高一数学第一学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.半径为1cm,圆心角为的扇形的弧长为()A. B.C. D.2.已知全集,集合则下图中阴影部分所表示的集合为()A. B.C. D.3.设集合,则中元素的个数为()A.0 B.2C.3 D.44.已知方程,在区间(-2,0)上的解可用二分法求出,则的取值范围是A.(-4,0) B.(0,4)C.[-4,0] D.[0,4]5.已知点的坐标分别为,直线相交于点,且直线的斜率与直线的斜率的差是1,则点的轨迹方程为A. B.C. D.6.如图所示,在中,.若,,则()A. B.C. D.7.已知,,,则a、b、c的大小关系是()A. B.C. D.8.如图所示的四个几何体,其中判断正确的是A.(1)不棱柱B.(2)是棱柱C.(3)是圆台D.(4)是棱锥9.正割及余割这两个概念是由伊朗数学家阿布尔威发首先引入的.定义正割,余割.已知为正实数,且对任意的实数均成立,则的最小值为()A. B.C. D.10.平面与平面平行的条件可以是()A.内有无穷多条直线与平行 B.直线,C.直线,直线,且, D.内的任何直线都与平行二、填空题:本大题共6小题,每小题5分,共30分。11.定义在上的函数满足则________.12.已知,则_________13.设点A(2,-3),B(-3,-2),直线过P(1,1)且与线段AB相交,则l的斜率k的取值范围是_____14.已知,且,则_______.15.已知函数,,的图象如下图所示,则,,的大小关系为__________.(用“”号连接)16.函数的定义域为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义域为的函数是奇函数.(1)求的解析式;(2)若恒成立,求实数的取值范围.18.已知函数.(1)判断的奇偶性并证明;(2)用函数单调性的定义证明在区间上单调递增;(3)若对,不等式恒成立,求实数的取值范围.19.已知函数的图象中相邻两条对称轴之间的距离为,且直线是其图象的一条对称轴(1)求,的值;(2)在图中画出函数在区间上的图象;(3)将函数的图象上各点的横坐标缩短为原来的(纵坐标不变),再把得到的图象向左平移个单位,得到的图象,求单调减区间.20.已知函数,图象上相邻的最高点与最低点的横坐标相差,______;(1)①的一条对称轴且;②的一个对称中心,且在上单调递减;③向左平移个单位得到的图象关于轴对称且从以上三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;(2)在(1)的情况下,令,,若存在使得成立,求实数的取值范围.21.已知是定义在上的偶函数,且时,(1)求函数的表达式;(2)判断并证明函数在区间上的单调性

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用扇形弧长公式直接计算即可.【详解】圆心角化为弧度为,则弧长为.故选:D.2、C【解析】根据题意,结合Venn图与集合间的基本运算,即可求解.【详解】根据题意,易知图中阴影部分所表示.故选:C.3、B【解析】先求出集合,再求,最后数出中元素的个数即可.【详解】因集合,,所以,所以,则中元素的个数为2个.故选:B4、B【解析】根据零点存在性定理,可得,求解即可.【详解】因为方程在区间(-2,0)上的解可用二分法求出,所以有,解得.故选B【点睛】本题主要考查零点的存在性定理,熟记定理即可,属于基础题型.5、B【解析】设,直线的斜率为,直线的斜率为.有直线的斜率与直线的斜率的差是1,所以.通分得:,整理得:.故选B.点睛:求轨迹方程的常用方法:(1)直接法:直接利用条件建立x,y之间的关系F(x,y)=0(2)待定系数法:已知所求曲线的类型,求曲线方程(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程(4)代入(相关点)法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程6、C【解析】根据.且,,利用平面向量的加法,减法和数乘运算求解.【详解】因为.且,,所以,,,.故选:C7、D【解析】借助中间量比较即可.详解】解:根据题意,,,,所以故选:D8、D【解析】直接利用多面体和旋转体的结构特征,逐一核对四个选项得答案解:(1)满足前后面互相平行,其余面都是四边形,且相邻四边形的公共边互相平行,∴(1)是棱柱,故A错误;(2)中不满足相邻四边形的公共边互相平行,∴(2)不是棱柱,故B错误;(3)中上下两个圆面不平行,不符合圆台的结构特征,∴(3)不是圆台,故C错误;(4)符合棱锥的结构特征,∴(4)是棱锥,故D正确故选D考点:棱锥的结构特征9、D【解析】由参变量分离法可得出,利用基本不等式可求得取值范围,即可得解.【详解】由已知可得,可得,因为,则,因为,当且仅当时,等号成立,故.故选:D.10、D【解析】由题意利用平面与平面平行的判定和性质,逐一判断各个选项是否正确,从而得出结论【详解】解:当内有无穷多条直线与平行时,与可能平行,也可能相交,故A错误当直线,时,与可能平行也可能相交,故B错误当直线,直线,且,,如果,都平行,的交线时满足条件,但是与相交,故C错误当内的任何直线都与平行时,由两个平面平行的定义可得,这两个平面平行,故D正确;故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】表示周期为3的函数,故,故可以得出结果【详解】解:表示周期为3的函数,【点睛】本题考查了函数的周期性,解题的关键是要能根据函数周期性的定义得出函数的周期,从而进行解题12、【解析】两边同时取以15为底的对数,然后根据对数性质化简即可.【详解】因为所以,所以,故答案为:13、k≥或k≤-4【解析】算出直线PA、PB的斜率,并根据斜率变化的过程中求得斜率的取值范围详解】直线PA的斜率为,同理可得PB的斜率为直线过点且与AB相交直线的斜率取值范围是k≥或k≤-4故答案为k≥或k≤-414、【解析】根据题意,可知,结合三角函数的同角基本关系,可求出和再根据,利用两角差的余弦公式,即可求出结果.【详解】因为,所以,因为,所以,又,所以,所以.故答案为:.15、【解析】函数y=ax,y=xb,y=logcx的图象如图所示,由指数函数y=ax,x=2时,y∈(2,3)对数函数y=logcx,x=2,y∈(0,1);幂函数y=xb,x=2,y∈(1,2);可得a∈(1,2),b∈(0,1),c∈(2,+∞)可得b<a<c故答案为b<a<c16、【解析】根据根式、对数的性质有求解集,即为函数的定义域.【详解】由函数解析式知:,解得,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由是奇函数可得,从而可求得值,即可求得的解析式;(2)由复合函数的单调性判断在上单调递减,结合函数的奇偶性将不等式恒成立问题转化为,令,利用二次函数的性质求得的最大值,即可求得的取值范围【详解】(1)因为函数为奇函数,所以,即,所以,所以,可得,函数.(2)由(1)知所以在上单调递减.由,得,因为函数是奇函数,所以,所以,整理得,设,,则,当时,有最大值,最大值为.所以,即.【点睛】方法点睛:已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.18、(1)为奇函数,证明见解析(2)证明见解析(3)【解析】(1)求出函数的定义域,然后验证、之间的关系,即可证得函数为奇函数;(2)任取、,且,作差,因式分解后判断差值的符号,即可证得结论成立;(3)由参变量分离法可得出,令,求出函数在上的最大值,即可得出实数的取值范围.【小问1详解】证明:函数为奇函数,理由如下:函数的定义域为,,所以为奇函数.【小问2详解】证明:任取、,且,则,,,所以,,所以在区间上单调递增.【小问3详解】解:不等式在上恒成立等价于在上恒成立,令,因为,所以,则有在恒成立,令,,则,所以,所以实数的取值范围为.19、(1)..(2)见解析(3),【解析】(1)两条对称轴之间的距离是半个周期,求,当时,代入求(2)由(1)知,根据“五点法”画出函数的图象;(3)首先求图象变换后的解析式,再令,,求函数的单调递减区间.【详解】(1)∵相邻两条对称轴之间的距离为,∴的最小正周期,∴.∵直线是函数的图象的一条对称轴,∴.∴,∵,∴(2)由知0-1010故函数在区间上的图象如图(3)由的图象上各点的横坐标缩短为原来的(纵坐标不变),得到,图象向左平移个单位后得到,,令,,∴函数的单调减区间为,【点睛】本题考查三角函数性质和图象的综合问题,意在考查熟练掌握三角函数性质,一般“五点法”画的图象,若是函数图象变换,1.左右平移,需根据“左+右-”的变换规律求解,2.周期变换(伸缩变换),若是函数横坐标伸长(或缩短)到原来的倍,变换后的解析式为.20、(1)选①②③,;(2).【解析】(1)根据题意可得出函数的最小正周期,可求得的值,根据所选的条件得出关于的表达式,然后结合所选条件进行检验,求出的值,综合可得出函数的解析式;(2)求得,由可计算得出,进而可得出,由参变量分离法得出,利用基本不等式求得的最小值,由此可得出实数的取值范围.【详解】(1)由题意可知,函数的最小正周期为,.选①,因为函数的一条对称轴,则,解得,,所以,的可能取值为、.若,则,则,不合乎题意;若,则,则,合乎题意.所以,;选②,因为函数的一个对称中心,则,解得,,所以,的可能取值为、.若,则,当时,,此时,函数在区间上单调递增,不合乎题意;若,则,当时,,此时,函数在区间上单调递减,合乎题意;所以,;选③,将函数向左平移个单位得到的图象关于轴对称,所得函数为,由于函数的图象关于轴对称,可得,解得,,所以,的可能取值为、.若,则,,不合乎题意;若,则,,合乎题意.所以,;(2)由(1)可知,所以,,当时,,,所以,,所以,,,,,则,由可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论