版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市周浦中学2023年数学高一上期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.用斜二测画法画一个水平放置的平面图形的直观图是如图所示的一个正方形,则原来的图形是()A. B.C. D.2.在R上定义运算⊙:A⊙B=A(1-B),若不等式(x-a)⊙(x+a)<1对任意的实数x∈R恒成立,则实数a的取值范围为()A.-1<a<1 B.0<a<2C.-<a< D.-<a<3.设奇函数f(x)在(0,+∞)上为减函数,且f(1)=0,则不等式<0的解集为()A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)4.若,则()A B.C. D.5.半径为2,圆心角为的扇形的面积为()A. B.C. D.26.已知函数的图像中相邻两条对称轴之间的距离为,当时,函数取到最大值,则A.函数的最小正周期为 B.函数的图像关于对称C.函数的图像关于对称 D.函数在上单调递减7.设奇函数在上为增函数,且,则不等式的解集为A. B.C. D.8.已知定义在R上偶函数fx满足下列条件:①fx是周期为2的周期函数;②当x∈0,1时,fx=A12 B.1C.-149.已知函数是R上的单调函数,则实数a的取值范围是()A. B.C. D.10.下列命题中,真命题是.A.xR,x2+1=x B.xR,x2+1<2xC.xR,x2+1>x D.xR,x2+2x>1二、填空题:本大题共6小题,每小题5分,共30分。11.若函数有4个零点,则实数a的取值范围为___________.12.已知函数,若,则_____13.高斯是德国著名的数学家,用其名字命名的“高斯函数”为,其中表示不超过x的最大整数.例如:,.已知函数,若,则________;不等式的解集为________.14.一个扇形的中心角为3弧度,其周长为10,则该扇形的面积为__________15.已知圆心角为2rad的扇形的周长为12,则该扇形的面积为____________.16.若圆心角为的扇形的弧长为,则该扇形面积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.(1)求;(2)若,,求,并计算.18.已知函数的图象过点.(Ⅰ)求实数的值;(Ⅱ)若不等式恒成立,求实数的取值范围;(Ⅲ)若函数,,是否存在实数使得的最小值为,若存在请求出的值;若不存在,请说明理由.19.已知圆的标准方程为,圆心为,直线的方程为,点在直线上,过点作圆的切线,,切点分别为,(1)若,试求点的坐标;(2)若点的坐标为,过作直线与圆交于两点,当时,求直线的方程;(3)求证:经过,,三点的圆必过定点,并求出所有定点的坐标20.已知圆的方程为,是坐标原点.直线与圆交于两点(1)求的取值范围;(2)过点作圆的切线,求切线所在直线的方程.21.设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=,(1)求φ;(2)求函数y=f(x)的单调增区间
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由斜二测画法的规则知与x'轴平行或重合的线段与x’轴平行或重合,其长度不变,与y轴平行或重合的线段与x’轴平行或重合,其长度变成原来的一半,正方形的对角线在y'轴上,可求得其长度为,故在平面图中其在y轴上,且其长度变为原来的2倍,长度为2,观察四个选项,A选项符合题意.故应选A考点:斜二测画法点评:注意斜二测画法中线段长度的变化2、C【解析】根据新定义把不等式转化为一般的一元二次不等式,然后由一元二次不等式恒成立得结论【详解】∵(x-a)⊙(x+a)=(x-a)(1-x-a),∴不等式(x-a)⊙(x+a)<1,即(x-a)(1-x-a)<1对任意实数x恒成立,即x2-x-a2+a+1>0对任意实数x恒成立,所以Δ=1-4(-a2+a+1)<0,解得,故选:C.3、C【解析】利用函数奇偶性,等价转化目标不等式,再结合已知条件以及函数单调性,即可求得不等式解集.【详解】∵f(x)为奇函数,故可得,则<0等价于.∵f(x)在(0,+∞)上为减函数且f(1)=0,∴当x>1时,f(x)<0.∵奇函数图象关于原点对称,∴在(-∞,0)上f(x)为减函数且f(-1)=0,即x<-1时,f(x)>0.综上使<0的解集为(-∞,-1)∪(1,+∞)故选:.【点睛】本题考查利用函数奇偶性和单调性解不等式,属综合基础题.4、C【解析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果【详解】将式子进行齐次化处理得:故选:C【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论5、D【解析】利用扇形的面积公式即得.【详解】由题可得.故选:D6、D【解析】由相邻对称轴之间的距离,得函数的最小正周期,求得,再根据当时,函数取到最大值求得,对函数的性质进行判断,可选出正确选项【详解】因为函数的图像中相邻两条对称轴之间的距离为,所以,函数的最小正周期,所以,又因为当时,函数取到最大值,所以,,因为,所以,,函数最小正周期,A错误;函数图像的对称轴方程为,,B错误;函数图像的对称中心为,,C错误;所以选择D【点睛】由的图像求函数的解析式时,由函数的最大值和最小值求得,由函数的周期求得,代值进函数解析式可求得的值7、D【解析】由f(x)为奇函数可知,=<0.而f(1)=0,则f(-1)=-f(1)=0.当x>0时,f(x)<0=f(1);当x<0时,f(x)>0=f(-1)又∵f(x)在(0,+∞)上为增函数,∴奇函数f(x)在(-∞,0)上为增函数所以0<x<1,或-1<x<0.选D点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内8、B【解析】根据函数的周期为2和函数fx是定义在R上的偶函数,可知flog【详解】因为fx是周期为2所以flog又函数fx定义在R上的偶函数,所以又当x∈0,1时,fx=所以flog23故选:B.9、B【解析】可知分段函数在R上单调递增,只需要每段函数单调递增且在临界点处的函数值左边小于等于右边,列出不等式即可【详解】可知函数在R上单调递增,所以;对称轴,即;临界点处,即;综上所述:故选:B10、C【解析】根据全称命题和特称命题的含义,以及不等式性质的应用,即可求解.【详解】对于A中,,所以,所以不正确;对于B中,,所以,所以不正确;对于C中,,所以,所以正确;对于D中,,所以不正确,故选C.【点睛】本题主要考查了全称命题与特称命题的真假判定,其中解答中正确理解全称命题和特称命题的含义,以及不等式性质的应用是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将函数转化为方程,作出的图像,结合图像分析即可.【详解】令得,作出的函数图像,如图,因为有4个零点,所以直线与的图像有4个交点,所以.故答案为:12、-2020【解析】根据题意,设g(x)=f(x)+1=asinx+btanx,分析g(x)为奇函数,结合函数的奇偶性可得g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,计算可得答案【详解】根据题意,函数f(x)=asinx+btanx﹣1,设g(x)=f(x)+1=asinx+btanx,有g(﹣x)=asin(﹣x)+btan(﹣x)=﹣(asinx+btanx)=﹣g(x),则函数g(x)为奇函数,则g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,又由f(﹣2)=2018,则f(2)=﹣2020;故答案为-2020【点睛】本题考查函数奇偶性的性质以及应用,构造函数g(x)=f(x)+1是解题的关键,属于中档题13、①.②.【解析】第一空:”根据“高斯函数”的定义,可得,进而再分类讨论建立方程求值即可;第二空:分类讨论建立不等式求解即可.【详解】由题意,得,当时,,即;当时,,即(舍),综上;当时,,即,当时,,即,综上,.故答案为:;.【点睛】关键点睛:求解分段函数相关问题的关键是“分段归类”,即应用分类讨论思想.14、6【解析】利用弧长公式以及扇形周长公式即可解出弧长和半径,再利用扇形面积公式即可求解.【详解】设扇形的半径为,弧长为,则,解得,所以,答案为6.【点睛】主要考查弧长公式、扇形的周长公式以及面积公式,属于基础题.15、9【解析】根据题意条件,先设出扇形的半径和弧长,并找到弧长与半径之间的关系,通过已知的扇形周长,可以求解出扇形的半径和弧长,然后再利用完成求解.【详解】设扇形的半径为,弧长为,由已知得,圆心角,则,因为扇形的周长为12,所以,所以,,则.故答案为:9.16、【解析】根据扇形面积公式计算即可.【详解】设弧长为,半径为,为圆心角,所以,由扇形面积公式得.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),【解析】(1)利用同角三角函数的关系可得.(2)将写成,再用两角差的余弦求解;由可求,先化简再代入求解.【小问1详解】,且,解得,,所以.【小问2详解】因,,所以,所以,所以.因为,,所以,,所以.18、(1)(2)(3)【解析】(Ⅰ)根据图象过点,代入函数解析式求出k的值即可;(Ⅱ)令,则命题等价于,根据函数的单调性求出a的范围即可;(Ⅲ)根据二次函数的性质通过讨论m的范围,结合函数的最小值,求出m的值即可【详解】(I)函数的图象过点(II)由(I)知恒成立即恒成立令,则命题等价于而单调递增即(III),令当时,对称轴①当,即时,不符舍去.②当时,即时.符合题意.综上所述:【点睛】本题考查了对数函数的性质,考查函数的单调性、最值问题,考查转化思想以及分类讨论思想,换元思想,是一道中档题19、(1)或;(2)或;(3)详见解析【解析】(1)点在直线上,设,由对称性可知,可得,从而可得点坐标.(2)分析可知直线的斜率一定存在,设其方程为:.由已知分析可得圆心到直线的距离为,由点到线的距离公式可求得的值.(3)由题意知,即.所以过三点的圆必以为直径.设,从而可得圆的方程,根据的任意性可求得此圆所过定点试题解析:解:(1)直线的方程为,点在直线上,设,由题可知,所以,解之得:故所求点的坐标为或(2)易知直线的斜率一定存在,设其方程为:,由题知圆心到直线的距离为,所以,解得,或,故所求直线的方程为:或(3)设,则的中点,因为是圆的切线,所以经过三点的圆是以为圆心,以为半径的圆,故其方程为:化简得:,此式是关于的恒等式,故解得或所以经过三点的圆必过定点或考点:1直线与圆的位置关系问题;2过定点问题20、(1);(2)或【解析】(1)直线与圆交于两点,即直线与圆相交,转化成圆心到直线距离小于半径,利用公式解不等式;(2)过某点求圆的切线,分斜率存在和斜率不存在两种情况数形结合分别讨论.【详解】(1)圆心到直线的距离,解得或即k的取值范围为.(2)当过点P的直线斜率不存在时,即x=2与圆相切,符合题意.当过点P的直线斜率存在时,设其方程为即,由圆心(0,4)到直线的距离等于2,可得解得,故直线方程为综上所述,圆的切线方程为或【点睛】此题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年消防工程维保及消防安全教育培训合同2篇
- 二零二五版美发沙龙与发型师劳动合同范本(含职业规划)3篇
- 2025年度特种车辆租赁及操作培训服务合同3篇
- 二零二四南通国际会展中心场地租赁及配套设施合同3篇
- 二零二五版电商数据分析与优化代运营合同3篇
- 年度客运用车市场分析及竞争策略分析报告
- 2024-2025学年高中历史第二单元中国古代文艺长廊第7课汉字与书法课时作业含解析岳麓版必修3
- 2024-2025学年高中历史第6单元辛亥革命与中华民国的建立第20课北洋军阀统治时期的政治经济与文化经典题集锦含解析新人教版必修中外历史纲要上
- 2024音乐人授权影视作品使用其音乐合同
- 二零二四年度4S店租赁期内合同解除与违约金协议
- (主城一诊)重庆市2025年高2025届高三学业质量调研抽测 (第一次)地理试卷(含答案)
- (2024)湖北省公务员考试《行测》真题及答案解析
- 口算天天练一年级下
- GB/T 12706.1-2020额定电压1 kV(Um=1.2 kV)到35 kV(Um=40.5 kV)挤包绝缘电力电缆及附件第1部分:额定电压1 kV(Um=1.2 kV)和3 kV(Um=3.6 kV)电缆
- 自动控制原理全套课件
- 上海科技大学,面试
- 《五年级奥数总复习》精编课件
- TS2011-16 带式输送机封闭栈桥图集
- 矿区道路工程施工组织设计方案
- 多联机的施工方案与技术措施
- 新型肥料配方设计与加工PPT课件
评论
0/150
提交评论