版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省达州市2023-2024学年八上数学期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,AC=DF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组2.计算:的值是()A.0 B. C. D.或3.等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm4.下列各式从左到右变形正确的是()A.B.C.D.5.计算:=()A.+ B.+ C.+ D.+6.下列命题的逆命题不是真命题的是()A.两直线平行,内错角相等B.直角三角形两直角边的平方之和等于斜边的平方C.全等三角形的面积相等D.线段垂直平分线上的点到这条线段两端点的距离相等7.下列命题中,是假命题的是()A.如果一个等腰三角形有两边长分别是1,3,那么三角形的周长为7B.等腰三角形的高、角平分线和中线一定重合C.两个全等三角形的面积一定相等D.有两条边对应相等的两个直角三角形一定全等8.一项工程,甲单独做要x天完成,乙单独做要y天完成,则甲、乙合做完成工程需要的天数为()A. B. C. D.9.已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35° B.55° C.56° D.65°10.若分式,则的值为()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.一个边形,从一个顶点出发的对角线有______条,这些对角线将边形分成了______个三角形,这个边形的内角和为__________.12.在平面直角坐标系中,的顶点B在原点O,直角边BC,在x轴的正半轴上,,点A的坐标为,点D是BC上一个动点(不与B,C重合),过点D作交AB边于点E,将沿直线DE翻折,点B落在x轴上的F处.(1)的度数是_____________;(2)当为直角三角形时,点E的坐标是________________.13.如图,是的角平分线,点在边的垂直平分线上,,则__________度.14.若分式的值为0,则x的值是_________.15.如图,已知函数y=ax+b和的图象交于点P,根据图象,可得关于x的二元一次方程组的解是_______.16.用不等式表示x的3倍与5的和不大于10是____________________;17.当m=____时,关于x的分式方程无解.18.已知,且,则______.三、解答题(共66分)19.(10分)(1)求值:(1﹣)÷,其中a=1.(2)解方程:+2.20.(6分)某校初二数学兴趣小组活动时,碰到这样一道题:“已知正方形AD,点E、F、G、H分别在边AB、BC、CD、DA上,若,则EG=FH”.经过思考,大家给出了以下两个方案:(甲)过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;(乙)过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N;(1)对小杰遇到的问题,请在甲、乙两个方案中任选一个,加以证明(如图1)(2)如果把条件中的“”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为(如图2),试求EG的长度.21.(6分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.22.(8分)计算:;23.(8分)如图,四边形ABCD中,,,,对角线BD平分交AC于点P.CE是的角平分线,交BD于点O.(1)请求出的度数;(2)试用等式表示线段BE、BC、CP之间的数量关系,并说明理由;24.(8分)我们在学习了完全平方公式后,对于一些特殊数量关系的式子应该学会变形.如m2+2mn+2n2﹣6n+9=0;→m2+2mn+n2+n2﹣6n+9=0;→(m+n)2+(n﹣3)2=0,就会很容易得到m、n.已知:a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.25.(10分)计算:[(x2+y2)﹣(x﹣y)2+2y(x﹣y)]÷4y.26.(10分)如图,点,,,在一条直线上,,,.求证:.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据全等三角形的判定方法逐一判断即得答案.【详解】解:①若AB=DE,BC=EF,AC=DF,则根据SSS能使△ABC≌△DEF;②若AB=DE,∠B=∠E,BC=EF,则根据SAS能使△ABC≌△DEF;③若∠B=∠E,AC=DF,∠C=∠F,则根据AAS能使△ABC≌△DEF;④若AB=DE,AC=DF,∠B=∠E,满足有两边及其一边的对角对应相等,不能使△ABC≌△DEF;综上,能使△ABC≌△DEF的条件共有3组.故选:C.【点睛】本题考查了全等三角形的判定,属于基础题型,熟练掌握判定三角形全等的方法是解题的关键.2、D【解析】试题分析:根据的性质进行化简.原式=,当1a-1≥0时,原式=1a-1+1a-1=4a-1;当1a-1≤0时,原式=1-1a+1-1a=1-4a.综合以上情况可得:原式=1-4a或4a-1.考点:二次根式的性质3、C【解析】试题分析:分当腰长为4cm或是腰长为8cm两种情况:①当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故答案选C.考点:等腰三角形的性质;三角形三边关系.4、B【分析】根据分式的基本性质,依次分析各个选项,选出正确的选项即可.【详解】A.分式的分子和分母同时乘以10,应得,即A不正确,B.,故选项B正确,C.分式的分子和分母同时减去一个数,与原分式不相等,即C项不合题意,D.不能化简,故选项D不正确.故选:B.【点睛】此题考察分式的基本性质,分式的分子和分母需同时乘以(或除以)同一个不为0的整式,分式的值不变.不能在分子和分母中加减同一个整式,这是错误的.5、A【解析】利用完全平方公式化简即可求出值.【详解】解:原式=y2﹣y+,故选A.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.6、C【解析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】A、逆命题为:内错角相等,两直线平行,是真命题,故本选项不符合;B、逆命题为:当一边的平方等于另两边平方的和,此三角形是直角三角形,是真命题,故本选项不符合;C、逆命题为:面积相等的两个三角形是全等三角形,是假命题,故本选项符合;D、逆命题为:到线段两端点距离相等的点在线段的垂直平分线上,是真命题,故本选项不符合.故选:C.【点睛】本题考查的是原命题和逆命题,熟练掌握平行的性质和三角形的性质以及垂直平分线是解题的关键.7、B【分析】根据等腰三角形及等边三角形的性质即可一一判断.【详解】A、正确.一个等腰三角形有两边长分别是1,3,那么三角形的边长为1,3,3周长为7;B、等腰三角形底边上的高,中线和顶角的平分线重合,故本项错误;C、正确.两个全等三角形的面积一定相等;D、正确.有两条边对应相等的两个直角三角形一定全等;故选B.8、A【解析】根据工程问题的关系:工作量=工作效率×工作时间,把总工作量看作单位“1”,可知甲的工作效率为,乙的工作效率为,因此甲乙合作完成工程需要:1÷(+)=.故选A.9、B【分析】利用两直线平行同位角相等得到一对角相等,再由对顶角相等及直角三角形两锐角互余求出所求角度数即可.【详解】解:∵a∥b∴∠3=∠4∵∠3=∠1∴∠1=∠4∵∠5+∠4=90°且∠5=∠2∴∠1+∠2=90°∵∠1=35°∴∠2=55°故选B.【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.10、D【分析】首先将已知分式通分,得出,代入所求分式,即可得解.【详解】∵∴∴∴=故选:D.【点睛】此题主要考查分式的求值,利用已知分式的值转换形式,即可解题.二、填空题(每小题3分,共24分)11、【分析】多边形上任何不相邻的两个顶点之间的连线就是对角线,边形有个顶点,和它不相邻的顶点有个,因而从边形的一个顶点出发的对角线有条,把边形分成个三角形.由分成三角形个数即可求出多边形内角和.【详解】解:从边形的一个顶点出发的对角线有条,可以把边形划分为个三角形,这个边形的内角和为.故答案为:,,.【点睛】此题考查了多边形的对角线的知识,多边形的问题可以通过作对角线转化为三角形的问题解决,是转化思想在多边形中的应用.12、30°(1,)或(2,)【分析】(1)根据∠ACB=90°以及点A的坐标,得到AC和BC的长,再利用特殊角的三角函数值求解即可;(2)根据直角三角形的定义可分三种情况考虑:①当∠AEF=90°时,②当∠AEF=90°时,③当∠EAF=90°时,三种情况分别求解.【详解】解:(1)∵∠ACB=90°,点A的坐标为,∴AC=,BC=3,∴tan∠ABC==,∴∠ABC=30°,故答案为:30°;(2)△AEF为直角三角形分三种情况:①当∠AEF=90°时,
∵∠OED=∠FED,且∠OED+∠FED+∠AEF=180°,
∴∠OED=45°.
∵∠ACB=90°,点A的坐标为,∴tan∠ABC=,∠ABC=30°.
∵ED⊥x轴,
∴∠OED=90°-∠ABC=60°.
45°≠60°,此种情况不可能出现;②当∠AFE=90°时,
∵∠OED=∠FED=60°,
∴∠AEF=60°,
∵∠AFE=90°,
∴∠EAF=90°-∠AEF=30°.
∵∠BAC=90°-∠ABC=60°,
∴∠FAC=∠BAC-∠EAF=60°-30°=30°.
∵AC=,∴CF=AC•tan∠FAC=1,
∴OF=OC-FC=3-1=2,∴OD=1,∴DE=tan∠ABC×OD=,∴点E的坐标为(1,);③当∠EAF=90°时,
∵∠BAC=60°,
∴∠CAF=∠EAF-∠EAC=90°-60°=30°,
∵AC=,∴CF=AC•tan∠FAC=1,
∴OF=OC+CF=3+1=4,∴OD=2,∴DE=tan∠ABC×OD=,∴点E的坐标为(2,);综上知:若△AEF为直角三角形.点E的坐标为(1,)或(2,).故答案为:(1,)或(2,).【点睛】本题考查了一次函数图象与几何变换、角的计算以及解直角三角形,解题的关键是根据角的计算以及解直角三角形找出CF的长度.本题属于中档题,难度不大,但在解决该类题型时,部分同学往往会落掉2种情况,因此在平常教学中应多加对学生引导,培养他们考虑问题的全面性.13、1【分析】由线段垂直平分线的性质可得DB=DC,根据等腰三角形的性质可得∠DBC的度数,根据角平分线的性质可得∠ABD的度数,再根据三角形的内角和即得答案.【详解】解:∵点在边的垂直平分线上,∴DB=DC,∴∠DBC=,∵是的角平分线,∴∠ABD=,∴.故答案为:1.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质、角平分线的定义和三角形的内角和定理等知识,属于基础题型,熟练掌握上述基本知识是解题关键.14、1.【分析】直接利用分式为零的条件分析得出答案.【详解】∵分式的值为0,∴x1﹣1x=0,且x≠0,解得:x=1.故答案为1.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.15、【分析】根据题意利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】解:根据函数图可知,y=ax+b和的图象交于点P,P的纵坐标为-2,代入,求出P的坐标为(-4,-2),所以方程组的解为.故答案为.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.16、3x+5≤1【分析】直接利用x的3倍,即3x,与5的和,则3x+5,进而小于等于1得出答案.【详解】解:由题意可得:3x+5≤1.
故答案为:3x+5≤1.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.17、-6【解析】把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.18、.【分析】利用题目给的求出,再把它们相乘得到,再对原式进行变形凑出的形式进行计算.【详解】∵,∴,∴,∴,∵,∴,∴,∴原式.故答案是:.【点睛】本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.三、解答题(共66分)19、(1)a﹣1,99;(3)x=3.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得;(3)根据解分式方程的步骤依次计算可得.【详解】解:(1)原式=•=a﹣1,当a=1时,原式=1﹣1=99;(3)方程两边同乘x﹣1,得3x=1+3(x﹣1),解得x=3,检验:当x=3时,x﹣1≠0,∴x=3是原方程的解.【点睛】本题考查分式的混合运算与解分式方程,解题的关键是掌握分式的混合运算顺序和运算法则,注意解分式方程需要检验.20、(1)证明见解析;(2).【分析】(1)无论选甲还是选乙都是通过构建全等三角形来求解.甲中,通过证△AMB≌△BNC来得出所求的结论.乙中,通过证△AMB≌△ADN来得出结论;(2)按(1)的思路也要通过构建全等三角形来求解,可过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N,将△AND绕点A旋转到△APB,不难得出△APM和△ANM全等,那么可得出PM=MN,而MB的长可在直角三角形ABM中根据AB和AM(即HF的长)求出.如果设DN=x,那么NM=PM=BM+x,MC=BC-BM=1-BM,因此可在直角三角形MNC中用勾股定理求出DN的长,进而可在直角三角形AND中求出AN即EG的长.【详解】(1)选甲:证明:过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N∴AM=HF,BN=EG∵正方形ABCD,∴AB=BC,∠ABC=∠BCN=90°,∵EG⊥FH∴AM⊥BN∴∠BAM+∠ABN=90°∵∠CBN+∠ABN=90°∴∠BAM=∠CBN在△ABM和△CBN中,∠BAM=∠CBN,AB=BC,∠ABM=∠BCN∴△ABM≌△CBN,∴AM=BN即EG=FH;选乙:证明:过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N∴AM=HF,AN=EG∵正方形ABCD,∴AB=AD,∠BAD=∠ADN=90°,∵EG⊥FH∴∠NAM=90°∴∠BAM=∠DAN在△ABM和△ADN中,∠BAM=∠DAN,AB=AD,∠ABM=∠ADN∴△ABM≌△ADN,∴AM=AN即EG=FH;(2)解:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N,∵AB=1,AM=FH=∴在Rt△ABM中,BM=将△AND绕点A旋转到△APB,∵EG与FH的夹角为45°,∴∠MAN=45°,∴∠DAN+∠MAB=45°,即∠PAM=∠MAN=45°,从而△APM≌△ANM,∴PM=NM,设DN=x,则NC=1-x,NM=PM=+x在Rt△CMN中,(+x)2=+(1-x)2,解得x=,∴EG=AN=,答:EG的长为.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质、图形的旋转变换等知识.通过辅助线或图形的旋转将所求的线段与已知的线段构建到一对全等或相似的三角形中是本题的基本思路.21、(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.【分析】(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;
(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.【详解】(1)设甲工程队单独完成该工程需天,则乙工程队单独完成该工程需天.根据题意得:方程两边同乘以,得解得:经检验,是原方程的解.∴当时,.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:方案一:由甲工程队单独完成.所需费用为:(万元);方案二:由乙工程队单独完成.所需费用为:(万元);方案三:由甲乙两队合作完成.所需费用为:(万元).∵∴应该选择甲工程队承包该项工程.【点睛】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22、−【分析】直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.【详解】=−3−1+3=−.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.23、(1);(2)BE+CP=BC,理由见解析.【分析】(1)先证得为等边三角形,再利用平行线的性质可求得结论;(2)由BP、CE是△ABC的两条角平分线,结合BE=BM,依据“SAS”即可证得△BEO≌△BMO;利用三角形内角和求出∠BOC=120°,利用角平分线得出∠BOE=∠BOM=60,求出∠BOM,即可判断出∠COM=∠COP,即可判断出△OCM≌△OCP,即可得出结论;【详解】(1)∵,,∴为等边三角形,∴∠ACD=,∵,∴∠BAC=∠ACD=;(2)BE+CP=BC,理由如下:在BC上取一点M,使BM=BE,连接OM,如图所示:
∵BP、CE是△ABC的两条角平分线,∴∠OBE=∠OBM=∠ABC,在△BEO和△BMO中,,∴△BEO△BMO(SAS),∴∠BOE=∠BOM=60,∵BP、CE是△ABC的两条角平分线,
∴∠OBC+∠OCB=在△ABC中,∠BAC+∠ABC+∠ACB=180,
∵∠BAC=60,
∴∠ABC+∠ACB=18
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024高考地理一轮复习专练70滚动训练三必修一+必修二+必修三专练1~专练69含解析新人教版
- 2025高考数学考点剖析精创专题卷五-数列【含答案】
- 2024年湖北城市建设职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- Unit2复习卷2024-2025学年人教版八年级英语上册
- 四年级语文上册第一单元第3课现代诗二首品读释疑课件新人教版
- 九年级历史上册第七单元工业革命和国际共产主义运动的兴起第21课马克思主义的诞生和国际共产主义运动的兴起课件新人教版
- 常用介词(专项训练)-2024-2025学年人教PEP版英语六年级下册
- 二零二五年度厂房租赁及知识产权保护合同3篇
- 2024年江西财经职业学院高职单招职业适应性测试历年参考题库含答案解析
- 2024年江西新能源科技职业学院高职单招职业适应性测试历年参考题库含答案解析
- 【MOOC】思辨式英文写作-南开大学 中国大学慕课MOOC答案
- 期末测试卷(试题)-2024-2025学年五年级上册数学北师大版
- 2024年下半年中国石油大连石化分公司招聘30人易考易错模拟试题(共500题)试卷后附参考答案
- 附件:财政业务基础数据规范(3.0版)
- 电商公司售后服务管理制度
- 国有企业品牌建设策略方案
- 火灾应急处理课件
- 创新者的逆袭3:新质生产力的十八堂案例课-记录
- 2022-2024北京初三二模英语汇编:话题作文
- 家政培训讲师课件
- 人教版八年级英语上册Unit1-10完形填空阅读理解专项训练
评论
0/150
提交评论