四川省达州市2023年数学九上期末考试试题含解析_第1页
四川省达州市2023年数学九上期末考试试题含解析_第2页
四川省达州市2023年数学九上期末考试试题含解析_第3页
四川省达州市2023年数学九上期末考试试题含解析_第4页
四川省达州市2023年数学九上期末考试试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省达州市2023年数学九上期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,已知△AOB与△A1OB1是以点O为位似中心的位似图形,且相似比为1:2,点B的坐标为(-1,2),则点B1的坐标为()A.(2,-4) B.(1,-4) C.(-1,4) D.(-4,2)2.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.任意画一个三角形,其内角和是360°D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球3.⊙O是半径为1的圆,点O到直线L的距离为3,过直线L上的任一点P作⊙O的切线,切点为Q;若以PQ为边作正方形PQRS,则正方形PQRS的面积最小为()A.7 B.8 C.9 D.104.下列四种说法:①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②将1010减去它的,再减去余下的,再减去余下的,再减去余下的,……,依此类推,直到最后减去余下的,最后的结果是1;③实验的次数越多,频率越靠近理论概率;④对于任何实数x、y,多项式的值不小于1.其中正确的个数是()A.1 B.1 C.3 D.45.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正确结论的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤6.共享单车为市民出行带来了方便,某单车公司第一季度投放1万辆单车,计划第三季度投放单车的数量比第一季度多4400辆,设该公司第二、三季度投放单车数量的平均增长率均为,则所列方程正确的是()A. B.C. D.7.两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,正面朝上的概率B.掷一枚正六面体的骰子,出现点的概率C.转动如图所示的转盘,转到数字为奇数的概率D.从装有个红球和个蓝球的口袋中任取一个球恰好是蓝球的概率8.如果一个正多边形的中心角为60°,那么这个正多边形的边数是()A.4 B.5 C.6 D.79.如图,A、B、C、D四个点均在O上,∠AOD=40°,弦DC的长等于半径,则∠B的度数为( )A.40° B.45° C.50° D.55°10.如图,E是平行四边形ABCD的对角线BD上的点,连接AE并延长交BC于点F,且,则的值是()A. B. C. D.二、填空题(每小题3分,共24分)11.方程(x﹣1)(x+2)=0的解是______.12.分解因式:__________.13.已知,则的值为______.14.已知点A关于原点的对称点坐标为(﹣1,2),则点A关于x轴的对称点的坐标为_________15.如图,AC是⊙O的直径,弦BD⊥AC于点E,连接BC过点O作OF⊥BC于点F,若BD=12cm,AE=4cm,则OF的长度是___cm.16.如图,矩形中,,点是边上一点,交于点,则长的取值范围是____.17.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=15,则四边形ABCD的周长为_____.18.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.三、解答题(共66分)19.(10分)如图,在中,,且点的坐标为(1)画出绕点逆时针旋转后的.(2)求点旋转到点所经过的路线长(结果保留)(3)画出关于原点对称的20.(6分)小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字2,3,4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.若和为奇数,则小明胜;若和为偶数,则小亮胜.(1)请你用画树状图或列表的方法,求出这两数和为6的概率.(2)你认为这个游戏规则对双方公平吗?说说你的理由.21.(6分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16cm,请求出球的半径.22.(8分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B=60°.(1)求∠ADC的度数;(2)求证:AE是⊙O的切线.23.(8分)如图,顶点为M的抛物线y=a(x+1)2-4分别与x轴相交于点A,B(点A在点B的)右侧),与y轴相交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)判断△BCM是否为直角三角形,并说明理由.(3)抛物线上是否存在点N(不与点C重合),使得以点A,B,N为顶点的三角形的面积与S△ABC的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.24.(8分)如图是由24个小正方形组成的网格图,每一个正方形的顶点都称为格点,的三个顶点都是格点.请按要求完成下列作图,每个小题只需作出一个符合条件的图形.(1)在图1网格中找格点,作直线,使直线平分的面积;(2)在图2网格中找格点,作直线,使直线把的面积分成两部分.25.(10分)如图,平行四边形ABCD的顶点A在y轴上,点B、C在x轴上;OA、OB长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB,BC=6;(1)写出点D的坐标;(2)若点E为x轴上一点,且S△AOE=,①求点E的坐标;②判断△AOE与△AOD是否相似并说明理由;(3)若点M是坐标系内一点,在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.26.(10分)二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.

参考答案一、选择题(每小题3分,共30分)1、A【解析】过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,依据△AOB和△A1OB1相似,且相似比为1:2,即可得到,再根据△BOC∽△B1OD,可得OD=2OC=4,B1D=2BC=2,进而得出点B1的坐标为(2,-4).【详解】解:如图,过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,

∵点B的坐标为(-1,2),

∴BC=1,OC=2,

∵△AOB和△A1OB1相似,且相似比为1:2,∴,∵∠BCO=∠B1DO=90°,∠BOC=∠B1OD,

∴△BOC∽△B1OD,

∴OD=2OC=4,B1D=2BC=2,

∴点B1的坐标为(2,-4),

故选:A.【点睛】本题考查的是位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.2、D【分析】利用折线统计图可得出试验的频率在0.33左右,进而得出答案.【详解】解:A、抛一枚硬币,出现正面朝上的概率为0.5,不符合这一结果,故此选项错误;B、掷一个正六面体的骰子,出现3点朝上为,不符合这一结果,故此选项错误;C、任意画一个三角形,其内角和是360°的概率为:0,不符合这一结果,故此选项错误;D、从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球的概率为:,符合这一结果,故此选项正确.故选:D.【点睛】本题考查频率估算概率,关键在于通过图象得出有利信息.3、B【分析】连接OQ、OP,作于H,如图,则OH=3,根据切线的性质得,利用勾股定理得到,根据垂线段最短,当OP=OH=3时,OP最小,于是PQ的最小值为,即可得到正方形PQRS的面积最小值1.【详解】解:连接OQ、OP,作于H,如图,则OH=3,∵PQ为的切线,∴在Rt中,,当OP最小时,PQ最小,正方形PQRS的面积最小,当OP=OH=3时,OP最小,所以PQ的最小值为,所以正方形PQRS的面积最小值为1故选B4、C【分析】画图可判断①;将②转化为算式的形式,求解判断;③是用频率估计概率的考查;④中配成平方的形式分析可得.【详解】如下图,∠1=∠1,∠1+∠3=180°,即两边都平行的角,可能相等,也可能互补,①错误;②可用算式表示为:,正确;实验次数越多,则频率越接近概率,③正确;∵≥0,≥0∴≥1,④正确故选:C【点睛】本题考查平行的性质、有理数的计算、频率与概率的关系、利用配方法求最值问题,注意②中,我们要将题干文字转化为算式分析.5、D【解析】根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断①正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出②错误;根据直角三角形的性质判断出△AED、△MAD、△MEA三个三角形相似,利用相似三角形对应边成比例可得,然后求出MD=2AM=4EM,判断出④正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出⑤正确;过点M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GH∥AB,过点O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出③正确.【详解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,

∵E、F分别为边AB,BC的中点,

∴AE=BF=BC,

在△ABF和△DAE中,,

∴△ABF≌△DAE(SAS),

∴∠BAF=∠ADE,

∵∠BAF+∠DAF=∠BAD=90°,

∴∠ADE+∠DAF=∠BAD=90°,

∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,

∴∠AME=180°-∠AMD=180°-90°=90°,故①正确;

∵DE是△ABD的中线,

∴∠ADE≠∠EDB,

∴∠BAF≠∠EDB,故②错误;

∵∠BAD=90°,AM⊥DE,

∴△AED∽△MAD∽△MEA,

∴∴AM=2EM,MD=2AM,

∴MD=2AM=4EM,故④正确;

设正方形ABCD的边长为2a,则BF=a,

在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,

∴△AME∽△ABF,

∴,

即,

解得AM=

∴MF=AF-AM=,

∴AM=MF,故⑤正确;

如图,过点M作MN⊥AB于N,

则即解得MN=,AN=,

∴NB=AB-AN=2a-=,

根据勾股定理,BM=过点M作GH∥AB,过点O作OK⊥GH于K,

则OK=a-=,MK=-a=,

在Rt△MKO中,MO=根据正方形的性质,BO=2a×,

∵BM2+MO2=

∴BM2+MO2=BO2,

∴△BMO是直角三角形,∠BMO=90°,故③正确;

综上所述,正确的结论有①③④⑤共4个.故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.6、B【解析】直接根据题意得出第三季度投放单车的数量为:(1+x)2=1+0.1,进而得出答案.【详解】解:设该公司第二、三季度投放单车数量的平均增长率为x,根据题意可得:(1+x)2=1.1.故选:B.【点睛】此题主要考查了根据实际问题抽象出一元二次方程,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7、D【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B、掷一枚正六面体的骰子,出现点的概率为,故此选项不符合题意;C、转动如图所示的转盘,转到数字为奇数的概率为,故此选项不符合题意;D、从装有个红球和个蓝球的口袋中任取一个球恰好是蓝球的概率为,故此选项符合题意.故选:D.【点睛】此题考查了利用频率估计概率,属于常见题型,明确大量反复试验下频率稳定值即概率是解答的关键.8、C【解析】试题解析:这个多边形的边数为:故选C.9、C【分析】如图(见解析),先根据等边三角形的判定与性质可得,从而可得,再根据圆周角定理即可得.【详解】如图,连接OC,由圆的半径得:,弦DC的长等于半径,,是等边三角形,,,,由圆周角定理得:,故选:C.【点睛】本题考查了圆周角定理、等边三角形的判定与性质等知识点,熟练掌握圆周角定理是解题关键.10、A【分析】由BF∥AD,可得,再借助平行四边形的性质把AD转化为BC即可.【详解】∵四边形ABCD是平行四边形,∴AD=BC,∵,∴.∵BF∥AD,∴=.故选A【点睛】本题主要考查平行四边形的性质和平行线截线段成比例定理,掌握平行线截线段成比例定理是解题的关键.二、填空题(每小题3分,共24分)11、1、﹣1【分析】试题分析:根据几个式子的积为0,则至少有一个式子为0,即可求得方程的根.【详解】(x﹣1)(x+1)=0x-1=0或x+1=0解得x=1或-1.考点:解一元二次方程点评:本题属于基础应用题,只需学生熟练掌握解一元二次方程的方法,即可完成.12、【分析】提取公因式a进行分解即可.【详解】解:a2−5a=a(a−5).故答案是:a(a−5).【点睛】本题考查了因式分解−提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.13、【分析】设=k,用k表示出a、b、c,代入求值即可.【详解】解:设=k,∴a=2k,b=3k,c=4k,∴==.故答案是:.【点睛】本题考查了比例的性质,涉及到连比时一般假设比值为k,这是常用的方法.14、(1,2)【分析】利用平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,求出点A的坐标,再利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,求出A点关于x轴的对称点的坐标.【详解】解:∵点A关于原点的对称点的坐标是(-1,2),∴点A的坐标是(1,-2),∴点A关于x轴的对称点的坐标是(1,2),故答案为:(1,2).【点睛】本题考查的知识点是关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15、.【分析】连接OB,根据垂径定理和勾股定理即可求出OB,从而求出EC,再根据勾股定理即可求出BC,根据三线合一即可求出BF,最后再利用勾股定理即可求出OF.【详解】连接OB,∵AC是⊙O的直径,弦BD⊥AC,∴BE=BD=6cm,在Rt△OEB中,OB2=OE2+BE2,即OB2=(OB﹣4)2+62,解得:OB=,∴AC=2OA=2OB=13cm则EC=AC﹣AE=9cm,BC===3cm,∵OF⊥BC,OB=OC∴BF=BC=cm,∴OF===cm,故答案为.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.16、【分析】证明,利用相似比列出关于AD,DE,EC,CF的关系式,从而求出长的取值范围.【详解】∵∴∴∵四边形是矩形∴∴∴∴∴∴因为∴故答案为:.【点睛】本题考查了一元二次方程的最值问题,掌握相似三角形的性质以及判定、解一元二次方程得方法是解题的关键.17、1【分析】根据切线长定理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=25,根据四边形的周长公式计算,得到答案.【详解】∵四边形ABCD是⊙O的外切四边形,∴AE=AH,BE=BF,CF=CG,DH=DG,∴AD+BC=AB+CD=25,∴四边形ABCD的周长=AD+BC+AB+CD=25+25=1,故答案为:1.【点睛】本题考查的是切线长定理,掌握从圆外一点引圆的两条切线,它们的切线长相等是解题的关键.18、3.1或4.32或4.2【解析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.【详解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB==5,S△ABC=AB•BC=1.沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=•S△ABC=×1=3.1;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD=,∴AD=DP==1.2,∴AP=2AD=3.1,∴S等腰△ABP=•S△ABC=×1=4.32;③当CB=CP=4时,如图3所示,S等腰△BCP=•S△ABC=×1=4.2;综上所述:等腰三角形的面积可能为3.1或4.32或4.2,故答案为3.1或4.32或4.2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.三、解答题(共66分)19、(1)见解析;(2);(2)见解析【分析】(1)根据旋转角度、旋转中心及旋转方向确定各点的对称点,顺次连接即可;(2)根据圆的周长的计算即可;(3)根据与原点的对称点的坐标特征:横、纵坐标都变为相反数确定各点的对称点,顺次连接即可.【详解】解:(1)如图的即为所作图形,(2)由图可知是直角三角形,,,所以,点旋转到的过程中所经过的路径是一段弧,且它的圆心角为旋转角,半径为..所以点旋转到的过程中所经过的路径长为.(3)如图的即为所作图形,【点睛】本题考查了旋转作图、对称作图及弧长的计算,难度不大,注意准确的作出旋转后的图形是关键.20、(1);(2)这个游戏规则对双方是不公平的.【分析】(1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可;

(2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性.【详解】(1)列表如下:小亮和小明23422+2=42+3=52+4=633+2=53+3=63+4=744+2=64+3=74+4=8由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率=;(2)这个游戏规则对双方不公平.理由:因为P(和为奇数)=,P(和为偶数)=,而≠,所以这个游戏规则对双方是不公平的.【点睛】此题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.21、10cm【分析】取EF的中点M,作MN⊥AD交BC于点N,则MN经过球心O,连接OF,设OF=x,则OM=16−x,MF=8,然后在中利用勾股定理求得OF的长即可.【详解】解:如图,取EF的中点M,作MN⊥AD交BC于点N,则MN经过球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=16,设OF=x,则OM=16-x,MF=8,∴在中,,即,解得:x=10,答:球的半径为10cm.【点睛】本题主要考查了垂径定理,矩形的判定与性质及勾股定理的知识,解题的关键是正确作出辅助线构造直角三角形.22、(1)60°(2)见解析【分析】(1)根据“同弧所对的圆周角相等”可以得到∠ADC=∠B=60°.(2)欲证明AE是⊙O的切线,只需证明BA⊥AE即可.【详解】解:(1)∵∠B与∠ADC都是弧AC所对的圆周角,∠B=60°,∴∠ADC=∠B=60°(2)证明:∵AB是⊙O的直径,∴∠ACB=90°∵∠B=60°,∴∠BAC=30°又∵∠EAC=60°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE.又∵AB是⊙O的直径,∴AE是⊙O的切线.23、(1);(2)见解析;(3)存在,(,3),(,3),(,)【分析】(1)用待定系数法求出抛物线解析式即可;

(2)由抛物线解析式确定出抛物线的顶点坐标和与x轴的交点坐标,用勾股定理的逆定理即可;

(3)根据题意得出,然后求出,再代入求解即可.【详解】(1)∵抛物线与轴相交于点C(0,-3).

∴,

∴,

∴抛物线解析式为,

(2)△BCM是直角三角形,

理由:由(1)有,抛物线解析式为,

∴顶点为M的坐标为(-1,-4),

由(1)抛物线解析式为,

令,,

∴,

∴点A的坐标为(1,0),点B的坐标为(-3,0),

∴,,=,∵,∴,

∴△BCM是直角三角形,(3)设N点纵坐标为,根据题意得,即,∴,当N点纵坐标为3时,,解得:当N点纵坐标为-3时,,解得:(与点C重合,舍去),∴N点坐标为(,3),(,3),(,),【点睛】本题主要考查了待定系数法求抛物线解析式,勾股定理的逆定理的应用,图形面积的计算,解本题的关键是利用勾股定理的逆定理判断出△BCM是直角三角形.24、(1)见解析;(2)见解析【分析】(1)根据中线的定义画出中线即可平分三角形面积;

(2)根据同高且底边长度比为1:2的两个三角形的面积比为1:2寻找点,同时利用相似三角形对应边的比相等可找出格点.【详解】解:(1)如图①,由网格易知BD=CD,所以S△ABD=S△ADC,作直线AD即为所求;(2)如图②,取格点E,由AC∥BE可得,(或),∴S△ACN=2S△ABN(或S△ABM=2S△ACM,),∴作直线AE即为所求.(选取其中一条即可)【点睛】本题考查作图-应用与设计,三角形的面积,相似的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25、(1)(6,4);(2)①点E坐标或;②△AOE与△AOD相似,理由见解析;(3)存在,F1(﹣3,0);F2(3,8);;【分析】(1)求出方程x2﹣7x+12=0的两个根,OA=4,OB=3,可求点A坐标,即可求点D坐标;(2)①设点E(x,0),由三角形面积公式可求解;②由两组对边对应成比例,且夹角相等的两个三角形相似,可证△AOE∽△DAO;(3)根据菱形的性质,分AC与AF是邻边并且点F在射线AB上与射线BA上两种情况,以及AC与AF分别是对角线的情况分别进行求解计算.【详解】解:(1)∵OA、OB长是关于x的一元二次方程x2﹣7x+12=0的两个根,∴OA=4,OB=3,∴点B(﹣3,0),点A(0,4),且AD∥BC,AD=BC=6,∴点D(6,4)故答案为:(6,4);(2)①设点E(x,0),∵,∴∴∴点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论