四川省华蓥一中2024届数学高一上期末学业水平测试模拟试题含解析_第1页
四川省华蓥一中2024届数学高一上期末学业水平测试模拟试题含解析_第2页
四川省华蓥一中2024届数学高一上期末学业水平测试模拟试题含解析_第3页
四川省华蓥一中2024届数学高一上期末学业水平测试模拟试题含解析_第4页
四川省华蓥一中2024届数学高一上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省华蓥一中2024届数学高一上期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.在中,下列关系恒成立的是A. B.C. D.2.若是第二象限角,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限3.的弧度数是()A. B.C. D.4.已知集合,则A. B.C.( D.)5.函数的图像大致为()A. B.C. D.6.终边在x轴上的角的集合为()A. B.C. D.7.已知映射f:A→B,其中A={a,b},B={1,2},已知a的象为1,则b的象为A.1,2中的一个 B.1,2C.2 D.无法确定8.下列四个函数中,以π为最小正周期,且在区间上单调递减的是()A. B.C. D.9.《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其外形由圆柱和长方体组合而成.已知某组合体由圆柱和长方体组成,如图所示,圆柱的底面直径为1寸,长方体的长、宽、高分别为3.8寸,3寸,1寸,该组合体的体积约为12.6立方寸,若取3.14,则圆柱的母线长约为()A.0.38寸 B.1.15寸C.1.53寸 D.4.59寸10.已知函数的图像如图所示,则A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知单位向量与的夹角为,向量的夹角为,则cos=_______12.设定义在上的函数同时满足以下条件:①;②;③当时,,则=________.13.计算:________.14.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为的水车,以水车的中心为原点,过水车的中心且平行于水平面的直线为轴,建立如图平面直角坐标系,一个水斗从点出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时秒.经过秒后,水斗旋转到点,设点的坐标为,其纵坐标满足,当秒时,___________.15.如图,在平面直角坐标系中,矩形的顶点、分别在轴非负半轴和轴的非负半轴上滑动,顶点在第一象限内,,,设.若,则点的坐标为______;若,则的取值范围为______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数的部分图象如图所示()求函数的解析式()求函数在区间上的最大值和最小值17.已知线段的端点的坐标为,端点在圆上运动.(1)求线段中点的轨迹的方程;(2)若一光线从点射出,经轴反射后,与轨迹相切,求反射光线所在的直线方程.18.已知且.(1)求的解析式;(2)解关于x不等式:.19.已知函数,.(1)对任意的,恒成立,求实数k的取值范围;(2)设,证明:有且只有一个零点,且.20.设全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}(Ⅰ)求A∩B,(∁UA)∪(∁UB);(Ⅱ)设集合C={x|m+1<x<2m-1},若B∩C=C,求实数m的取值范围21.已知函数是定义在上的奇函数,且当时,.(1)当时,求函数的解析式.(2)解关于的不等式:.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】利用三角函数诱导公式,结合三角形的内角和为,逐个去分析即可选出答案【详解】由题意知,在三角形ABC中,,对A选项,,故A选项错误;对B选项,,故B选项错误;对C选项,,故C选项错误;对D选项,,故D选项正确.故选D.【点睛】本题考查了三角函数诱导公式,属于基础题2、D【解析】先分析得到,即得点所在的象限.【详解】因为是第二象限角,所以,所以点在第四象限,故选D【点睛】本题主要考查三角函数的象限符合,意在考查学生对该知识的理解掌握水平,属于基础题.3、C【解析】弧度,弧度,则弧度弧度,故选C.4、C【解析】因为所以,故选.考点:1.集合的基本运算;2.简单不等式的解法.5、A【解析】通过判断函数的奇偶性排除CD,通过取特殊点排除B,由此可得正确答案.【详解】∵∴函数是偶函数,其图像关于轴对称,∴排除CD选项;又时,,∴,排除B,故选.6、B【解析】利用任意角的性质即可得到结果【详解】终边在x轴上,可能为x轴正半轴或负半轴,所以可得角,故选B.【点睛】本题考查任意角的定义,属于基础题.7、A【解析】根据映射中象与原象定义,元素与元素的对应关系即可判断【详解】映射f:A→B,其中A={a,b},B={1,2}已知a的象为1,根据映射的定义,对于集合A中的任意一个元素在集合B中都有唯一的元素和它对应,可得b=1或2,所以选A【点睛】本题考查了集合中象与原象的定义,关于对应关系的理解.注意A集合中的任意元素在集合B中必须有对应,属于基础题8、B【解析】先判断各函数最小正周期,再确定各函数在区间上单调性,即可选择判断【详解】对于A,最小正周期为2π,在区间上单调递减,不合题意;对于B,最小正周期为π,在区间上单调递减,符合题意;对于C,最小正周期为2π,在区间上单调递减,不合题意;对于D,最小正周期为π,在区间上单调递增,不合题意;故选:B.9、C【解析】先求出长方体的体积,进而求出圆柱的体积,利用求出的圆柱体体积和圆柱的底面半径为0.5寸,求出圆柱的母线长【详解】由题意得,长方体的体积为(立方寸),故圆柱的体积为(立方寸).设圆柱的母线长为l,则由圆柱的底面半径为0.5寸,得,计算得:(寸).故选:C10、B【解析】本题首先可以通过图像得出函数的周期,然后通过函数周期得出的值,再然后通过函数过点求出的值,最后将带入函数解析式即可得出结果【详解】因为由图像可知,解得,所以,,因为由图像可知函数过点,所以,解得,取,,,所以,故选B【点睛】本题考查了三角函数的相关性质,主要考查了三角函数图像的相关性质,考查了三角函数的周期性的求法,考查计算能力,考查数形结合思想,是中档题二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据题意,由向量的数量积计算公式可得•、||、||的值,结合向量夹角计算公式计算可得答案【详解】根据题意,单位向量,的夹角为,则•1×1×cos,32,3,则•(32)•(3)=92+22﹣9•,||2=(32)2=92+42﹣12•7,则||,||2=(3)2=922﹣6•7,则||,故cosβ.故答案为【点睛】本题主要考查向量的数量积的运算和向量的夹角的计算,意在考察学生对这些知识的掌握水平和分析推理能力.12、【解析】利用周期性和奇偶性,直接将的值转化到上的函数值,再利用解析式计算,即可求出结果【详解】依题意知:函数为奇函数且周期为2,则,,即.【点睛】本题主要考查函数性质——奇偶性和周期性的应用,以及已知解析式,求函数值,同时,考查了转化思想的应用13、【解析】由,利用正弦的和角公式求解即可【详解】原式,故答案为:【点睛】本题考查正弦的和角公式的应用,考查三角函数的化简问题14、【解析】求出关于的函数解析式,将代入函数解析式,求出的值,可得出点的坐标,进而可求得的值.【详解】由题意可知,,函数的最小正周期为,则,所以,,点对应,,则,可得,,,故,当时,,因为,故点不与点重合,此时点,则.故答案为:.15、①.②.【解析】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,设点、,根据锐角三角函数的定义可得出点、的坐标,然后利用平面向量数量积的坐标运算和二倍角的正弦公式可求出的取值范围.【详解】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,如下图所示:则,设点、,则,,,.当时,,,则点;由上可知,,,则,因此,的取值范围是.故答案为:;.【点睛】本题考查点的坐标的计算,同时也考查了平面向量数量积的取值范围的求解,解题的关键就是将点的坐标利用三角函数表示,考查运算求解能力,属于中等题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、();(),【解析】(1)由图可知,,得,所以;(2)当时,,利用原始图象,可知,试题解析:()由图可知,∴,∴,,∵,∴∵,∴∴()当时,当,即时,当时,时,17、(1)(2),【解析】(1)设,利用中点坐标公式,转化为的坐标,代入圆的方程求解即可(2)设关于轴对称点设过的直线,利用点到直线的距离公式化简求解即可【详解】设,则代入轨迹的方程为(2)设关于轴对称点设过的直线,即∵,,∴或∴反射光线所在即即18、(1)(2)【解析】(1)根据已知条件联立方程组求出,进而求出函数的解析式;(2)根据已知条件求出,进而得出不等式,利用换元法及一元二次不等式得出的范围,再根据指数与对数互化解指数不等式即可.【小问1详解】由,得,解得.所以的解析式为.【小问2详解】由(2)知,,所以,由,得,即,令,则,解得或所以,即,解得.所以不等式的解集为.19、(1);(2)证明见解析.【解析】(1)利用的单调性以及对数函数的单调性,即可求出的范围(2)对进行分类讨论,分为:和,利用零点存在定理和数形结合进行分析,即可求解【详解】解:(1)因为是增函数,是减函数,所以在上单调递增.所以的最小值为,所以,解得,所以实数k的取值范围是.(2)函数的图象在上连续不断.①当时,因为与在上单调递增,所以在上单调递增.因为,,所以.根据函数零点存在定理,存在,使得.所以在上有且只有一个零点.②当时,因为单调递增,所以,因为.所以.所以在上没有零点.综上:有且只有一个零点.因为,即,所以,.因为在上单调递减,所以,所以.【点睛】关键点睛:对进行分类讨论时,①当时,因为与在上单调递增,再结合零点存在定理,即可求解;②当时,恒成立,所以,在上没有零点;最后利用,得到,然后化简可求解。本题考查函数的性质,函数的零点等知识;考查学生运算求解,推理论证的能力;考查数形结合,分类与整合,函数与方程,化归与转化的数学思想,属于难题20、(Ⅰ){x|x<1或x≥5},(Ⅱ)(-∞,3].【解析】(Ⅰ)求出集合A,B,由此能出A∩B,(∁UA)∪(∁UB)(Ⅱ)由集合C={x|m+1<x<2m﹣1},B∩C=C,得C⊆B,当C=∅时,2m﹣1<m+1,当C≠∅时,由C⊆B得,由此能求出m的取值范围【详解】解:(Ⅰ)∵全集U=R,集合A={x|2x-1≥1}={x|x≥1},B={x|x2-4x-5<0}={x|-1<x<5}∴A∩B={x|1≤x<5},(CUA)∪(CUB)={x|x<1或x≥5}(Ⅱ)∵集合C={x|m+1<x<2m-1},B∩C=C,∴C⊆B,当C=∅时,解得当C≠∅时,由C⊆B得,解得:2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论