天津南开中学滨海生态城学校2024届高一数学第一学期期末检测试题含解析_第1页
天津南开中学滨海生态城学校2024届高一数学第一学期期末检测试题含解析_第2页
天津南开中学滨海生态城学校2024届高一数学第一学期期末检测试题含解析_第3页
天津南开中学滨海生态城学校2024届高一数学第一学期期末检测试题含解析_第4页
天津南开中学滨海生态城学校2024届高一数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津南开中学滨海生态城学校2024届高一数学第一学期期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.已知函数,的图象与直线有两个交点,则的最大值为()A.1 B.2C. D.2.已知全集,集合,集合,则集合A. B.C. D.3.我国著名数学家华罗庚曾说:数缺形时少直观,形少数时难人微,数形结合百般好,割裂分家万事休.在数学的学习和研究中,有时可凭借函数的解析式琢磨函数图像的特征.如函数,的图像大致为()A. B.C. D.4.如图,在正方体中,分别为的中点,则异面直线和所成角的大小为A. B.C. D.5.根据表格中的数据,可以判定函数的一个零点所在的区间为.A. B.C. D.6.若,,,则()A. B.C. D.7.如果角的终边在第二象限,则下列结论正确的是A. B.C. D.8.如果,,那么直线不通过A.第一象限 B.第二象限C.第三象限 D.第四象限9.已知,,,是球的球面上的四个点,平面,,,则该球的半径为()A. B.C. D.10.命题“,”的否定为A., B.,C., D.,11.已知,则()A. B.C.5 D.-512.已知函数,,的零点分别为则的大小顺序为()A. B.C. D.二、填空题(本大题共4小题,共20分)13.比较大小:______cos()14.已知,α为锐角,则___________.15.已知函数(为常数)的一条对称轴为,若,且满足,在区间上是单调函数,则的最小值为__________.16.已知函数,则__________.三、解答题(本大题共6小题,共70分)17.设在区间单调,且都有(1)求的解析式;(2)用“五点法”作出在的简图,并写出函数在的所有零点之和.18.已知二次函数满足条件和,(1)求;(2)求在区间()上的最小值19.为保护环境,污水进入河流前都要进行净化处理.我市工业园区某工厂的污水先排入净化池,然后加入净化剂进行净化处理.根据实验得出,在一定范围内,每放入1个单位的净化剂,在污水中释放的浓度y(单位:毫克/立方米)随着时间x(单位:小时)变化的函数关系式近似为.若多次加进净化剂,则某一时刻净化剂在污水中释放的浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当净化剂在污水中释放的浓度不低于4(毫克/立方米)时,它才能起到净化污水的作用.(1)若投放1个单位的净化剂4小时后,求净化剂在污水中释放的浓度;(2)若一次投放4个单位的净化剂并起到净化污水的作用,则净化时间约达几小时?(结果精确到0.1,参考数据:,)(3)若第一次投放1个单位的净化剂,3小时后再投放2个单位的净化剂,设第二次投放t小时后污水中净化剂浓度为(毫克/立方米),其中,求的表达式和浓度的最小值.20.在中,已知,,且AC边的中点M在y轴上,BC边的中点N在x轴上,求:顶点C的坐标;

直线MN的方程21.如图所示,一块形状为四棱柱的木料,分别为的中点.(1)要经过和将木料锯开,在木料上底面内应怎样画线?请说明理由;(2)若底面是边长为2菱形,,平面,且,求几何体的体积.22.(1)求函数的解析式;(2)试判断函数在区间上的单调性,并用函数单调性定义证明;(3)当时,函数恒成立,求实数m的取值范围

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】由可得,然后可得的最大值为,即可得到答案.【详解】由可得,所以当时,由与有两个交点可得的最大值为所以则的最大值为故选:D2、A【解析】,所以,故选A.考点:集合运算.3、B【解析】根据题意求出函数的定义域并判断出函数的奇偶性,再代入特殊值点即可判断答案.【详解】由题意,函数定义域为,,于是排除AD,又,所以C错误,B正确.故选:B.4、D【解析】连DE,交AF于G,根据平面几何知识可得,于是,进而得.又在正方体中可得底面,于是可得,根据线面垂直的判定定理得到平面,于是,所以两直线所成角为【详解】如图,连DE,交AF于G在和中,根据正方体的性质可得,∴,∴,∴,∴又在正方体中可得底面,∵底面,∴,又,∴平面,∵平面,∴,∴异面直线和所成角的大小为故选D【点睛】求异面直线所成的角常采用“平移线段法”,将空间角的问题转化为平面问题处理,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角时通常放在三角形中利用解三角形的方法进行求解,有时也可通过线面间的垂直关系进行求解5、D【解析】函数,满足.由零点存在定理可知函数的一个零点所在的区间为.故选D.点睛:函数的零点问题,常根据零点存在性定理来判断,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,

这个c也就是方程f(x)=0的根.由此可判断根所在区间.6、C【解析】先由,可得,结合,,可得,继而得到,,转化,利用两角差的正弦公式即得解【详解】由题意,故故又,故,则故选:C【点睛】本题考查了两角和与差的正弦公式、同角三角函数关系综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题7、B【解析】由题意结合三角函数的性质确定所给结论是否正确即可.【详解】角的终边在第二象限,则,AC错误;,B正确;当时,,,D错误本题选择B选项.【点睛】本题主要考查三角函数符号,二倍角公式及其应用等知识,意在考查学生的转化能力和计算求解能力.8、A【解析】截距,因此直线不通过第一象限,选A9、D【解析】由题意,补全图形,得到一个长方体,则PD即为球O的直径,根据条件,求出PD,即可得答案.【详解】依题意,补全图形,得到一个长方体,则三棱锥P-ABC的外接球即为此长方体的外接球,如图所示:所以PD即为球O的直径,因为平面,,,所以AD=BC=3,所以,所以半径,故选:D【点睛】本题考查三棱锥外接球问题,对于有两两垂直的三条棱的三棱锥,可将其补形为长方体,即长方体的体对角线为外接球的直径,可简化计算,方便理解,属基础题.10、A【解析】特称命题的否定是全称命题,并将结论否定,即可得答案.【详解】命题“,”的否定为“,”.故选:A.【点睛】本题考查特称命题的否定的书写,是基础题.11、C【解析】令,代入直接计算即可.【详解】令,即,则,故选:C.12、C【解析】利用数形结合,画出函数的图象,判断函数的零点的大小即可【详解】函数,,的零点转化为,,与的图象的交点的横坐标,因为零点分别为在坐标系中画出,,与的图象如图:可知,,,满足故选:二、填空题(本大题共4小题,共20分)13、>【解析】利用诱导公式化简后,根据三角函数的单调性进行判断即可【详解】cos(π)=cos(﹣4π)=cos()=cos,cos(π)=cos(﹣4π)=cos()=cos,∵y=cosx在(0,π)上为减函数,∴coscos,即cos(π)>cos(π)故答案为>【点睛】本题主要考查函数的大小比较,根据三角函数的诱导公式以及三角函数的单调性是解决本题的关键,属于基础题14、【解析】由同角三角函数关系和诱导公式可得结果.【详解】因为,且为锐角,则,所以,故.故答案为:.15、【解析】根据是的对称轴可取得最值,即可求出的值,进而可得的解析式,再结合对称中心的性质即可求解.【详解】因为是的对称轴,所以,化简可得:,即,所以,有,,可得,,因为,且满足,在区间上是单调函数,又因为对称中心,所以,当时,取得最小值.故答案为:.16、2【解析】先求出,然后再求的值.【详解】由题意可得,所以,故答案为:三、解答题(本大题共6小题,共70分)17、(1)(2)图象见解析,所有零点之和为【解析】(1)依题意在时取最大值,在时取最小值,再根据函数在单调,即可得到,即可求出,再根据函数在取得最大值求出,即可求出函数解析式;(2)列出表格画出函数图象,再根据函数的对称性求出零点和;【小问1详解】解:依题意在时取最大值,在时取最小值,又函数在区间单调,所以,即,又,所以,由得,即,又因为,所以,,所以.【小问2详解】解:列表如下0001所以函数图象如下所示:由图知的一条对称轴为有两个实数根,记为,则由对称性知,所以所有实根之和为.18、(1);(2).【解析】(1)由二次函数可设,再利用进行化简分析即可.(2)由(1)可知,对称轴为,通过讨论的范围,根据函数的单调性,求出函数的最小值.【详解】(1)由二次函数可设,因为,故,即,即,故,即,故;(2)函数的对称轴为,则当,即时,在单调递减,;当,即时,;当时,在单调递增,,.【点睛】本题主要考查二次函数的解析式求解以及二次函数最值的问题等,属于中等题型.19、(1)6毫克/立方米(2)7.1(3),;的最小值为12毫克/立方米【解析】(1)由函数解析式,将代入即可得解;(2)分和两种情况讨论,根据题意列出不等式,从而可得出答案;(3)根据题意写出函数的解析式,再根据基本不等式即可求得最小值.【小问1详解】解:由,当时,,所以若投放1个单位的净化剂4小时后,净化剂在污水中释放的浓度为6毫克/立方米;【小问2详解】解:因为净化剂在污水中释放的浓度不低于4(毫克/立方米)时,它才能起到净化污水的作用,当时,令,得恒成立,所以当时,起到净化污水的作用,当时,令,得,则,所以,综上所述当时,起到净化污水的作用,所以若一次投放4个单位的净化剂并起到净化污水的作用,则净化时间约达7.1小时;【小问3详解】解:因为第一次投入1个单位的净化剂,3小时后再投入2个单位净化剂,要计算的是第二次投放t小时后污水中净化剂浓度为,所以,,因为,所以,当且仅当,即时取等号,所以,,当时,取最小值12毫克/立方米.20、(1);(2)【解析】(1)边AC中点M在y轴上,由中点公式得,A,C两点的横坐标和的平均数为0,同理,B,C两点的纵坐标和的平均数为0.构造方程易得C点的坐标(2)根据C点的坐标,结合中点公式,我们可求出M,N两点的坐标,代入两点式即可求出直线MN的方程解:(1)设点C(x,y),∵边AC的中点M在y轴上得=0,∵边BC的中点N在x轴上得=0,解得x=﹣5,y=﹣3故所求点C的坐标是(﹣5,﹣3)(2)点M的坐标是(0,﹣),点N的坐标是(1,0),直线MN的方程是=,即5x﹣2y﹣5=0点评:在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况21、(1)见解析(2)3【解析】(1)根据面面平行的性质,两个平行平面,被第三个平面所截,截得的交线互相平行,故得到就是应画的线;(2)几何体是由三棱锥和四棱锥组成,分割成两个棱锥求体积即可解析:(1)连接,则就是应画的线;事实上,连接,在四棱柱中,因为分别为的中点,所以,,所以平行四边形,所以,又在四棱柱中,所以,所以点共面,又面,所以就是应画线.(2)几何

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论