版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西藏日喀则区南木林高级中学2023-2024学年数学高一上期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数与的图象关于直线对称,则的单调递增区间是()A. B.C. D.2.已知圆:与圆:,则两圆公切线条数为A.1条 B.2条C.3条 D.4条3.计算:的值为A. B.C. D.4.设直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱AA1、CC1上,且PA=QC1,则四棱锥B-APQC的体积为()A. B.C. D.5.(南昌高三文科数学(模拟一)第9题)我国古代数学名著《九章算术》中有如下问题:今有甲乙丙三人持钱,甲语乙丙:各将公等所持钱,半以益我,钱成九十(意思是把你们两个手上的钱各分我一半,我手上就有钱);乙复语甲丙,各将公等所持钱,半以益我,钱成七十;丙复语甲乙:各将公等所持钱,半以益我,钱成五十六,则乙手上有钱.A. B.C. D.6.如图所示的是用斜二测画法画出的的直观图(图中虚线分别与轴,轴平行),则原图形的面积是()A.8 B.16C.32 D.647.《九章算术》中,称底面为矩形且有一侧棱垂直于底面的四棱锥为阳马,如图,某阳马的三视图如图所示,则该阳马的最长棱的长度为()A. B.C.2 D.8.已知是定义在上的奇函数,且当时,,那么A. B.C. D.9.已知两个不重合的平面α,β和两条不同直线m,n,则下列说法正确的是A.若m⊥n,n⊥α,m⊂β,则α⊥βB.若α∥β,n⊥α,m⊥β,则m∥nC.若m⊥n,n⊂α,m⊂β,则α⊥βD.若α∥β,n⊂α,m∥β,则m∥n10.直线与直线平行,则的值为()A. B.2C. D.0二、填空题:本大题共6小题,每小题5分,共30分。11.如图,圆锥的底面圆直径AB为2,母线长SA为4,若小虫P从点A开始绕着圆锥表面爬行一圈到SA的中点C,则小虫爬行的最短距离为________12.若函数在区间上单调递减,在上单调递增,则实数的取值范围是_________13.已知,则的值为___________.14.已知函数,,对任意,总存在使得成立,则实数a的取值范围是_________.15.已知,函数,若函数有两个零点,则实数k的取值范围是________16.设函数;若方程有且仅有1个实数根,则实数b的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道(,是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口是的中点,分别落在线段上.已知米,米,记.(1)试将污水净化管道总长度(即的周长)表示为的函数,并求出定义域;(2)问当取何值时,污水净化效果最好?并求出此时管道的总长度.(提示:.)18.已知函数是定义在上奇函数,且.(1)求,的值;(2)判断在上的单调性,并用定义证明.19.已知α是第二象限角,且tanα=-(1)求sinα,cos(2)求sinα-5π+20.如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为(1)求侧面与底面所成的二面角的大小;(2)若是的中点,求异面直线与所成角的正切值;21.已知函数的图象恒过定点A,且点A又在函数的图象上.(1)求实数a的值;(2)若函数有两个零点,求实数b的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据题意得,,进而根据复合函数的单调性求解即可.【详解】解:因为函数与的图象关于直线对称,所以,,因为的解集为,即函数的定义域为由于函数在上单调递减,在上单调递减,上单调递增,所以上单调递增,在上单调递减.故选:C2、D【解析】求出两圆的圆心与半径,利用圆心距判断两圆外离,公切线有4条【详解】圆C1:x2+y2﹣2x=0化为标准形式是(x﹣1)2+y2=1,圆心是C1(1,0),半径是r1=1;圆C2:x2+y2﹣4y+3=0化为标准形式是x2+(y﹣2)2=1,圆心是C2(0,2),半径是r2=1;则|C1C2|r1+r2,∴两圆外离,公切线有4条故选D【点睛】本题考查了两圆的一般方程与位置关系应用问题,是基础题3、A【解析】运用指数对数运算法则.【详解】.故选:A.【点睛】本题考查指数对数运算,是简单题.4、C【解析】为直三棱柱,且,.故C正确考点:棱锥的体积5、B【解析】详解】设甲乙丙各有钱,则有解得,选B.6、C【解析】由斜二测画法知识得原图形底和高【详解】原图形中,,边上的高为,故面积为32故选:C7、B【解析】根据三视图画出原图,从而计算出最长的棱长.【详解】由三视图可知,该几何体如下图所示,平面,,则所以最长的棱长为.故选:B8、C【解析】由题意得,,故,故选C考点:分段函数的应用.9、B【解析】由题意得,A中,若,则或,又,∴不成立,∴A是错误的;B.若,则,又,∴成立,∴B正确;C.当时,也满足若,∴C错误;D.若,则或为异面直线,∴D错误,故选B考点:空间线面平行垂直的判定与性质.【方法点晴】本题主要考查了空间线面位置关系的判定与证明,其中熟记空间线面位置中平行与垂直的判定定理与性质定理是解得此类问题的关键,着重考查了学生的空间想象能和推理能力,属于基础题,本题的解答中,可利用线面位置关系的判定定理和性质定理判定,也可利用举出反例的方式,判定命题的真假.10、B【解析】根据两直线平行的条件列式可得结果.【详解】当时,直线与直线垂直,不合题意;当时,因直线与直线平行,所以,解得.故选:B【点睛】易错点点睛:容易忽视纵截距不等这个条件导致错误.二、填空题:本大题共6小题,每小题5分,共30分。11、2.【解析】分析:要求小虫爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果详解:由题意知底面圆的直径AB=2,故底面周长等于2π.设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得2π=,解得n=90,所以展开图中∠PSC=90°,根据勾股定理求得PC=2,所以小虫爬行的最短距离为2.故答案为2点睛:圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决三、12、【解析】反比例函数在区间上单调递减,要使函数在区间上单调递减,则,还要满足在上单调递增,故求出结果【详解】函数根据反比例函数的性质可得:在区间上单调递减要使函数在区间上单调递减,则函数在上单调递增则,解得故实数的取值范围是【点睛】本题主要考查了函数单调性的性质,需要注意反比例函数在每个象限内是单调递减的,而在定义域内不是单调递减的13、##【解析】根据给定条件结合二倍角的正切公式计算作答.【详解】因,则,所以的值为.故答案为:14、【解析】根若对于任意的∈,总存在,使得g(x0)=f(x1)成立,得到函数f(x)在上值域是g(x)在上值域的子集,然后利用求函数值域之间的关系列出不等式,解此不等式组即可求得实数a的取值范围即可【详解】∵,∴f(0)≤f(x)≤f(1),即0≤f(x)≤4,即函数f(x)的值域为B=[0,4],若对于任意的∈,总存在,使得g(x0)=f(x1)成立,则函数f(x)在上值域是g(x)在上值域A的子集,即B⊆A①若a=0,g(x)=0,此时A={0},不满足条件②当a≠0时,在是增函数,g(x)∈[﹣+3a,],即A=[﹣+3a,],则,∴综上,实数a的取值范围是故答案为【点睛】本题主要考查了函数恒成立问题,以及函数的值域,同时考查了分类讨论的数学思想,属于中档题15、【解析】由题意函数有两个零点可得,得,令与,作出函数与的图象如图所示:由图可知,函数有且只有两个零点,则实数的取值范围是.故答案为:.【点睛】本题考查分段函数的应用,函数零点的判断等知识,解题时要灵活应用数形结合思想16、【解析】根据分段函数的解析式作出函数图象,将方程有且仅有1个实数根转化为函数与直线有一个交点,然后数形结合即可求解.【详解】作出函数的图象,如图:结合图象可得:,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),定义域为.(2)当或时所铺设的管道最短,为米.【解析】(1)如图,因为都是直角三角形,故可以得到,也就是,其中.(2)可变形为,令后,则有,其中,故取的最大值米.【详解】(1).由于,,所以,故.管道的总长度,定义域为.(2).设,则,由于,所以.因为在内单调递减,于是当时,取的最大值米.(此时或).答:当或时所铺设的管道最短,为米.【点睛】在三角变换中,注意之间有关系,如,,三者中知道其中一个,必定可以求出另外两个.18、(1),;(2)证明见解析【解析】(1)根据已知条件,为奇函数,利用可以求解出参数b,然后带入到即可求解出参数a,得到函数解析式后再去验证函数是否满足在上的奇函数即可;(2)由第(1)问求解出的函数解析式,任取,,做差,通过因式分解判断差值的符号,即可证得结论.【小问1详解】由已知条件,函数是定义在上的奇函数,所以,,所以,所以,检验,为奇函数,满足题意条件;所以,.小问2详解】在上单调递增,证明如下:任取,,;其中,,所以,故在上单调递增.19、(1)sinα=(2)713【解析】(1)解方程组sin2(2)直接利用诱导公式化简求值.【小问1详解】解:因为tanα=-5又sin2α+所以sinα=【小问2详解】解:sin=-20、(1)(2)【解析】(1)取中点,连结、,则是侧面与底面所成的二面角,由此能求出侧面与底面所成的二面角(2)连结,,则是异面直线与所成角(或所成角的补角),由此能求出异面直线与所成角的正切值【详解】解:(1)取中点,连结、,正四棱锥中,为底面正方形的中心,,,是侧面与底面所成的二面角,侧棱与底面所成的角的正切值为,设,得,,,,,侧面与底面所成的二面角为(2)为底面正方形的中心,是中点,连结,,是的中点,,是异面直线与所成角(或所成角的补角),,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年新版中国发电机喷油器铜套项目可行性研究报告
- 2024-2030年撰写:中国节能环保装备项目风险评估报告
- 2024-2030年撰写:中国甲基紫B行业发展趋势及竞争调研分析报告
- 2024-2030年撰写:中国弹力起动机项目风险评估报告
- 2024-2030年撰写:中国型煤煤炭洗选项目风险评估报告
- 2024-2030年撰写:中国Western印迹行业发展趋势及竞争调研分析报告
- c语言课课程设计目的
- 2024-2030年屋顶离心风机公司技术改造及扩产项目可行性研究报告
- 2024-2030年冰座公司技术改造及扩产项目可行性研究报告
- 2024-2030年全球硬质合金刀片行业应用规模及需求前景预测报告
- DB37-T 4253-2020 地热资源勘查技术规程
- 诸暨中学提前招生选拔考试数学试卷含答案
- 高压氧治疗-PPT课件
- 研究型课程(跨学科)项目学习设计与实施案例
- 西门子s7_200PLC基本指令
- 特殊学生成长档案记录(精选.)
- 高速公路安全封路施工标志标牌示意图
- 计算机科学前沿技术课心得体会
- 窗玻璃的可见光透射比.遮阳系数
- 监理工作程序流程图(共24页)
- 打印机租赁服务月考核表
评论
0/150
提交评论