云南省丘北县第二中学2023-2024学年高一数学第一学期期末预测试题含解析_第1页
云南省丘北县第二中学2023-2024学年高一数学第一学期期末预测试题含解析_第2页
云南省丘北县第二中学2023-2024学年高一数学第一学期期末预测试题含解析_第3页
云南省丘北县第二中学2023-2024学年高一数学第一学期期末预测试题含解析_第4页
云南省丘北县第二中学2023-2024学年高一数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省丘北县第二中学2023-2024学年高一数学第一学期期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“,”的否定是()A., B.,C., D.,2.若方程表示圆,则实数的取值范围是A. B.C. D.3.若函数在区间上存在零点,则实数的取值范围是A. B.C. D.4.过点的直线在两坐标轴上的截距之和为零,则该直线方程为()A. B.C.或 D.或5.已知f(x)、g(x)均为[﹣1,3]上连续不断的曲线,根据下表能判断方程f(x)=g(x)有实数解的区间是()x﹣10123f(x)﹣06773.0115.4325.9807.651g(x)﹣0.5303.4514.8905.2416.892A.(﹣1,0) B.(1,2)C.(0,1) D.(2,3)6.已知,则的最大值为()A. B.C.0 D.27.已知函数f(x)=|lnx|-1,g(x)=-x2+2x+3,用min{m,n}表示m,n中的最小值.设函数h(x)=min{f(x),g(x)},则函数h(x)的零点个数为()A.1 B.2C.3 D.48.若函数的图象(部分)如图所示,则的解析式为()A. B.C. D.9.集合的真子集的个数是()A. B.C. D.10.命题的否定是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.计算:__________,__________12.学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图象,当时,图象是二次函数图象的一部分,其中顶点,过点;当时,图象是线段BC,其中.根据专家研究,当注意力指数大于62时,学习效果最佳.要使得学生学习效果最佳,则教师安排核心内容的时间段为____________.(写成区间形式)13.函数是幂函数,且当时,是减函数,则实数=_______14.在三棱锥中,,,两两垂直,,,三棱锥的侧面积为13,则该三棱锥外接球的表面积为______.15.已知点在角的终边上,则___________;16.已知,若存在定义域为的函数满足:对任意,,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,(1)用,表示;(2)求18.已知函数为幂函数,且为奇函数.(1)求的值,并确定的解析式;(2)令,求在的值域.19.已知全集U=R,集合,,求:(1)A∩B;(2).20.如图,在中,斜边,,在以为直径的半圆上有一点(不含端点),,设的面积,的面积.(1)若,求;(2)令,求的最大值及此时的.21.已知函数,(1)求函数最小正周期以及函数在区间上的最大值和最小值;(2)将函数图象的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,若,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用含有一个量词的命题的否定的定义求解即可【详解】“,”的否定是“,,”故选:C2、A【解析】由二元二次方程表示圆的充要条件可知:,解得,故选A考点:圆的一般方程3、C【解析】由函数的零点的判定定理可得f(﹣1)f(1)<0,解不等式求得实数a的取值范围【详解】由题,函数f(x)=ax+1单调,又在区间(﹣1,1)上存在一个零点,则f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1故选C【点睛】本题主要考查函数的零点的判定定理的应用,属于基础题4、D【解析】分截距为零和不为零两种情况讨论即可﹒【详解】当直线过原点时,满足题意,方程为,即2x-y=0;当直线不过原点时,设方程为,∵直线过(1,2),∴,∴,∴方程,故选:D﹒5、C【解析】设h(x)=f(x)﹣g(x),利用h(0)=f(0)﹣g(0)=﹣0.44<0,h(1)=f(1)﹣g(1)=0.542>0,即可得出结论.【详解】设h(x)=f(x)﹣g(x),则h(0)=f(0)﹣g(0)=﹣0.44<0,h(1)=f(1)﹣g(1)=0.542>0,∴h(x)的零点在区间(0,1),故选:C.【点睛】思路点睛:该题考查的是有关零点存在性定理的应用问题,解题思路如下:(1)先构造函数h(x)=f(x)﹣g(x);(2)利用题中所给的有关函数值,得到h(0)=﹣0.44<0,h(1)=0.542>0;(3)利用零点存在性定理,得到结果.6、C【解析】把所求代数式变形,转化成,再对其中部分以基本不等式求最值即可解决.【详解】时,(当且仅当时等号成立)则,即的最大值为0.故选:C7、C【解析】画图可知四个零点分别为-1和3,和e,但注意到f(x)的定义域为x>0,故选C.8、A【解析】根据正弦型函数最小正周期公式,结合代入法进行求解即可.【详解】设函数的最小正周期为,因为,所以由图象可知:,即,又因为函数过,所以有,因为,所以令,得,即,故选:A9、B【解析】确定集合的元素个数,利用集合真子集个数公式可求得结果.【详解】集合的元素个数为,故集合的真子集个数为.故选:B.10、C【解析】根据存在量词命题的否定是全称量词命题,选出正确选项.【详解】因为命题是存在量词命题,所以其否定是全称量词命题,即,.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、①.0②.-2【解析】答案:0,12、【解析】当,时,设,把点代入能求出解析式;当,时,设,把点、代入能求出解析式,结合题设条件,列出不等式组,即可求解.详解】当x∈(0,12]时,设,过点(12,78)代入得,a则f(x),当x∈(12,40]时,设y=kx+b,过点B(12,78)、C(40,50)得,即,由题意得,或得4<x≤12或12<x<28,所以4<x<28,则老师就在x∈(4,28)时段内安排核心内容,能使得学生学习效果最佳,故答案为:(4,28)【点睛】本题考查解析式的求法,考查不等式组的解法,解题时要认真审题,注意待定系数法的合理运用,属于中档题13、-1【解析】根据幂函数的定义,令m2﹣m﹣1=1,求出m的值,再判断m是否满足幂函数当x∈(0,+∞)时为减函数即可【详解】解:∵幂函数,∴m2﹣m﹣1=1,解得m=2,或m=﹣1;又x∈(0,+∞)时,f(x)为减函数,∴当m=2时,m2+m﹣3=3,幂函数为y=x3,不满足题意;当m=﹣1时,m2+m﹣3=0,幂函数为y=x﹣3,满足题意;综上,m=﹣1,故答案为﹣1【点睛】本题考查了幂函数的定义与图像性质的应用问题,解题的关键是求出符合题意的m值14、【解析】根据侧面积计算得到,再计算半径为,代入表面积公式得到答案.【详解】三棱锥的侧面积为,所以故该三棱锥外接球的半径为:,球的表面积为.故答案为:【点睛】本题考查了三棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.15、##【解析】根据三角函数得定义即可的解.【详解】解:因为点在角的终边上,所以.故答案为:.16、-2【解析】由已知可得为偶函数,即,令,由,可得,计算即可得解.【详解】对任意,,将函数向左平移2个单位得到,函数为偶函数,所以,令,由,可得,解得:.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】先把指数式化为对数式求出的值,再利用对数的运算性质进行求解【小问1详解】解:,,,【小问2详解】解:,,,18、(1),;(2).【解析】(1)根据幂函数的定义及函数奇偶性的定义即可求解;(2)由(1),得,利用换元法得到,,再根据二次函数的性质即可求解.【小问1详解】因为函数为幂函数,所以,解得或,当时,函数是奇函数,符合题意,当时,函数是偶函数,不符合题意,综上所述,的值为,函数的解析式为.【小问2详解】由(1)知,,所以,令,则,,所以,,根据二次函数的性质知,的对称轴为,开口向上,所以在上单调递增;所以,所以函数在的值域为.19、(1);(2)(-∞,3)∪[4,+∞)【解析】(1)化简集合B,直接求交集即可;(2)求出集合B的补集,进而求并集即可.【详解】(1)由已知得:B=(-∞,3),A=[1,4),∴A∩B=[1,3)(2)由已知得:=(-∞,1)∪[4,+∞),∴()∪B=(-∞,3)∪[4,+∞)【点睛】本题考查集合的基本运算,借助数轴是求解交、并、补集的好方法,常考题型20、(1);(2),有最大值.【解析】由已知可得,.(1)根据解可得答案;(2)由化简为,根据的范围可得答案.【详解】因为中,,,所以,,.又因为为以为直径的半圆上一点,所以.在中,,,.作于点,则,,(1)若,则,因为,所以,所以,整理得,所以,.(2)因为,所以,当时,即,有最大值.【点睛】本题考查了三角函数的性质和解三角形,关键点是利用已知得到,,正确的利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论