版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题4.6阿氏圆阿氏圆问题问题:求解“”类加权线段和最小值方法:①定:定系数,并确定是半径和哪条线段的比值②造:根据线段比,构造母子型相似③算:根据母子型结论,计算定点位置④转:“”转化为“”问题关键:①可解性:半径长与圆心到加权线段中定点距离比等于加权系数②系数小于1:内部构造母子型③系数大于1:外部构造母子型【典例1】阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD=2,利用(1)中的结论,请直接写出AD+BD的最小值.【解答】解(1)在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.∴MP:PD=k,∴MP=kPD,∴PC+kPD=PC+MP,当PC+kPD取最小值时,PC+MP有最小值,即C,P,M三点共线时有最小值,利用勾股定理得.(2)∵AC=m=4,=,在CB上取一点M,使得CM=CD=,∴的最小值为.【变式1-1】如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=9,⊙B的半径为3,点P是⊙B上一点,连接AP,CP,则AP+CP的最小值为.【答案】【解答】解:连接BP,在BC上截取BQ=1,连接PQ,AQ,∴,,∴,∵∠PBQ=∠CBP,∴△BPQ∽△BCP,∴,∴PQ=CP,∴AP+CP=AP+PQ≥AQ,当A、P、Q三点依次在同一直线上时,AP+CP=AQ=的值最小,故答案为:.【变式1-2】如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,则AP+BP的最小值为()A. B.6 C.2 D.4【答案】A【解答】解:如图1,连接CP,在CB上取点D,使CD=1,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.要使AP+BP最小,只要AP+PD最小,当点A,P,D在同一条直线时,AP+PD最小,即:AP+BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP的最小值为,故选:A.【变式1-3】如图,在正方形ABCD中.AB=8,点P是正方形ABCD内部的一点,且满足BP=4,则PD+PC的最小值是()A.6 B.8 C.10 D.12【答案】C【解答】解:在BC边上取一点E,使BE=2,连接DE,如图∵ABCD是正方形,AB=8∴AB=BC=CD=8,∠BCD=90°∵BP=4∴,∴且∠PBC=∠PBC∴△PBE∽△BCP∴∴PE=PC∴PD+PC=PD+PE在Rt△DCE中,CD=8,CE=BC﹣BE=6∴DE==10∵PD+PE≥DE∴PD+PE≥10∴PD+PC的最小值是10故选:C.【变式1-4】如图,已知抛物线y=﹣x2+x+3与x轴交于A,B两点(A在点B的左侧),与y轴交于点C,⊙O与x轴交于点E(2,0),点P是⊙O上一点,连接CP,BP,求BP+CP的最小值.【解答】解:如图,在OC上取一点T,使得OT=,连接PT,BT,OP.由题意C(0,3),E(2,0),A(﹣1,0),B(4,0)∴OE=2,OC=3,OB=4,OA=1,∴OP2=OT•OB,∴=,∵∠POT=∠COP,∴△POT∽△COP,∴===,∴PT=PC,∴PB+PC=BP+PT≥BT,在Rt△BOT中,OB=4,OT=,∴BT===,∴ABP+PC≥,∴BP+PC的最小值为.【变式1-5】如图,在△ABC中,∠A=90°,AB=AC=4,点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,则的最小值为.【答案】.【解答】解:如图,在AB上截取AQ=1,连接AP,PQ,CQ,∵点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,∴,∵AP=2,AQ=1,∴,∵∠PAQ=∠BAP,∴△APQ∽△ABP,∴PQ=PB,∴PB+PC=PC+PQ≥CQ,在Rt△ACQ中,AC=4,AQ=1,∴QC===.,∴PB+PC的最小值.,故答案为:.【变式1-6】如图,已知菱形ABCD的边长为8,∠B=60°,圆B的半径为4,点P是圆B上的一个动点,则PD﹣PC的最大值为2.【答案】2.【解答】解:连接PB,在BC上取一点G,使得BG=2,连接PG,DG,过点D作DH⊥BC交BC的延长线于H.∵PB=4,BG=2,BC=8,∴PB2=BG•BC,∴=,∵∠PBG=∠CBP,∴△PBG∽△CBP,∴==,∴PG=PC,∵四边形ABCD是菱形,∴AB∥CD,AB=CD=BC=8,∴∠DCH=∠ABC=60°,在Rt△CDH中,CH=CD•cos60°=4,DH=CD•sin60°=4,∴GH=CG+CH=6+4=10,∴DG===2,∵PD﹣PC=PD﹣PG≤DG,∴PD﹣PC≤2,∴PD﹣PC的最大值为2.【变式1-7】【新知探究】新定义:平面内两定点A,B,所有满足=k(k为定值)的P点形成的图形是圆,我们把这种圆称之为“阿氏圆”【问题解决】如图,在△ABC中,CB=4,AB=2AC,则△ABC面积的最大值为.【答案】.【解答】解:以A为顶点,AC为边,在△ABC外部作∠CAP=∠ABC,AP与BC的延长线交于点P,∵∠CAP=∠ABC,∠BPA=∠APC,AB=2AC,∴△APC∽△BPA,,∴BP=2AP,CP=AP,∵BP﹣CP=BC=4,∴2AP﹣AP=4,解得:AP=,∴BP=,CP=,即点P为定点,∴点A的轨迹为以点P为圆心,为半径的圆上,如图,过点P作BC的垂线,交圆P与点A1,此时点A1到BC的距离最大,即△ABC的面积最大,S△ABC=BC•A1P=×4×=.故答案为:.【变式1-8】如图,扇形AOB中,∠AOB=90°,OA=6,C是OA的中点,D是OB上一点,OD=5,P是上一动点,则PC+PD的最小值为.【答案】.【解答】解:如图,延长OA使AE=OB,连接EC,EP,OP,∵AO=OB=6,C分别是OA的中点,∴OE=12,OP=6,OC=AC=3,∴==,且∠COP=∠EOP∴△OPE∽△OCP∴==,∴EP=2PC,∴PC+PD=(2PC+PD)=(PD+PE),∴当点E,点P,点D三点共线时,PC+PD的值最小,∵DE===13,∴PD+PE≥DE=13,∴PD+PE的最小值为13,∴PC+PD的值最小值为.故答案为:.【变式1-9】如图所示的平面直角坐标系中,A(0,4),B(4,0),P是第一象限内一动点,OP=2,连接AP、BP,则BP+的最小值是.【答案】.【解答】解:如图,取点T(0,1),连接PT,BT.∵T(0,1),A(0,4),B(4,0),∴OT=1,OA=4,OB=4,∵OP=2,∴OP2=OT•OA,∴=,∵∠POT=∠AOP,∴△POT∽△AOP,∴==,∴PT=PA,∴PB+PA=PB+PT,∵BT==,∴PB+PT≥,∴BP+AP≥∴BP+PB的最小值为.故答案为:.【变式1-10】如图所示,在平面直角坐标系中,A(16,0),B(0,12),点C是第一象限的动点且OC=6,线段OC绕点O在第一象限转动;(1)在转动过程中,求点C到AB的最近距离=;(2)试求的最小值=.【答案】(1).(2).【解答】解:(1)如图1,以点O为圆心,6为半径作弧,作OE⊥AB于点E,∵点C是第一象限的动点且OC=6,∴点C在以点O为圆心,6为半径的圆弧上,在Rt△AOB中,OA=16,OB=12,∴AB===20,∴S△AOB=OA•OB=AB•OE,即16×12=20×OE,解得OE=,CE=OE﹣OC=﹣6=.故答案为:.(2)如图2,在OB上取OD=3,连接CD,AD,∵,,∴,又∵∠DOC=∠COB,∴△COD∽△BOC,∴,∴CD=BC,∴AC+BC=AC+CD,∵在△ACD中,AC+CD>AD,当点D、C、A三点共线时,AC+CD=AD,此时AC+CD值最小,在Rt△AOD中,∴AD===,∴AC+BC的最小值为.故答案为:.【变式1-11】如图1,在四边形ABCD中,AC交BD于点E,△ADE为等边三角形.(1)若点E为BD的中点,AD=4,CD=5,求△BCE的面积;(2)如图2,若BC=CD,点F为CD的中点,求证:AB=2AF;(3)如图3,若AB∥CD,∠BAD=90°,点P为四边形ABCD内一点,且∠APD=90°,连接BP,取BP的中点Q,连接CQ.当AB=6,AD=4,tan∠ABC=2时,求CQ+BQ的最小值.【答案】(1)﹣2.(2)证明见解析部分.(3)CQ+BQ的最小值为【解答】(1)解:如图1中,过点C作CH⊥BD于H,设EH=x.∵△ADE是等边三角形,∴AD=DE=4,∠AED=∠CEH=60°,∵∠CHE=90°,∴CH=EH•tan60°=x,∵CD2=CH2+DH2,∴25=3x2+(x+4)2,∴4x2+8x﹣9=0∴x=或(舍弃),∴CH=,∴S△BEC=×4×=﹣2.解法二:过点B作BJ⊥AC交AC的延长线于J,过点D作DT⊥AE于T.证明BJ=DT,求出DT,即可解决问题.(2)证明:如图2中,延长AF到G,使得FG=AF,连接DG,CG,延长GC交BD于T,过点C作CH⊥BD于H.∵AF=FG,CF=FD,∴四边形ACGD是平行四边形,∴AC∥DG,GC∥AD,∴∠CAD+∠ADG=180°,∵△ADE是等边三角形,∴AE=AD,∠AED=∠ADE=∠EAD=60°,∴∠AEB=∠ADG=120°,∴∠CGD=∠EAD=60°=∠GDT,∴△DGT是等边三角形,∴DG=DT,∠CTE=∠CET=60°,∴△CET是等边三角形,∴CT=CE,∠CTE=∠CET=60°,∵CB=CD,CH⊥BD,∴BH=DH,TH=EH,∴BT=DE,∴BE=DT=DG,∴△AEB≌△ADG(SAS),∴AB=AG=2AF.(3)解:如图3中,取AD的中点O,连接OP,OB,OC,取OB的中点J,连接QJ,CJ,过点C作CF⊥AB于F,在JB上取一点T,使得JT=,连接QT,TC.∵AB∥CD,∠BAD=90°,∴∠ADC=90°,∵CF⊥AB,∴∠CFA=90°,∴四边形AFCD是矩形,∴AD=CF=4,∵tan∠CBA==2,∴BF=2,∵AB=6,∴AF=4,∴AD=AF,∴四边形AFCD是正方形,∵BC===2,CO===2,OB==4,∴CB=CO,∵CF=CD,∠CFB=∠CDO=90°,∴Rt△CFB≌Rt△CDO(HL),∴∠BCF=∠DCO,∴∠BCO=∠DCF=90°,∵BJ=JO,∴CJ=OB=2,∴CT===,∵BQ=QP,BJ=JO,∴QJ=OP=,∵QJ2=2,TJ•JB=×2=2,∴QJ2=JT•JB,∴=,∵∠QJT=∠QJB,∴△QJT∽△BJQ,∴===,∴QT=BQ,∴CQ+BQ=CQ+QT≥CT=,∴CQ+BQ的最小值为.【典例2】如图,在扇形AOB中,∠AOB=90°,OA=4,C,D分别为OA,OB的中点,点P是上一点,则2PC+PD的最小值为.【答案】2.版权所有【解答】解:如图,延长OA使AE=OA,连接ED,EP,OP,∵AO=OB=4,C,D分别是OA,OB的中点,∴OE=8,OP=4,OD=OC=2,∴==,且∠COP=∠EOP,∴△OPE∽△OCP,∴==,∴EP=2DC,∴2PC+PD=PE+PD,∴当点E,点P,点D三点共线时,2PC+PD的值最小,∴2PC+PD最小值==2.【变式2-1】如图,在扇形COD中,∠COD=90°,OC=3,点A是OC中点,OB=2,点P是为CD上一点,则PB+2PA的最小值为.【答案】【解答】连接OP,延长OC至点E,使得OE=6,则=,,∴,∵∠AOP=∠AOP,∴△AOP∽△POE,∴,即2PA=PE,∴PB+2PA=PB+PE,∴当E、P、B三点共线时,PB+PE最小,∴PB+2PA的最小值为BE==.故答案为:.【变式2-2】(梁溪区校级期中)如图,⊙O与y轴、x轴的正半轴分别相交于点M、点N,⊙O半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接PA,PB,则3PA+PB的最小值为.【答案】.【解答】解:如图,在y轴上取点H(0,9),连接BH,∵点A(0,1),点B(2,0),点H(0,9),∴AO=1,OB=2,OH=9,∵,∠AOP=∠POH,∴△AOP∽△POH,∴,∴HP=3AP,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年防洪工程承包商建设借款合同3篇
- 事业单位人力资源聘用合同(2024版)版B版
- 2024离婚协议房产
- 2025年度高级软件开发与技术服务合同2篇
- 二零二五版辣椒种子生产与辣椒苗代销合作协议2篇
- 2024版工程协议监管及进度记录台账一
- 二零二五版航空航天设备研发与采购合同范本3篇
- 2024年版砖结构建筑劳务合作模板协议版B版
- 二零二五年度烧烤餐饮业商铺租赁合同书3篇
- 二零二五版宠物伤害赔偿及责任承担协议3篇
- 生物医药大数据分析平台建设
- EPC总承包项目中的质量管理体系
- 沪教版小学语文古诗(1-4)年级教材
- 外科医生年终述职总结报告
- CT设备维保服务售后服务方案
- 重症血液净化血管通路的建立与应用中国专家共识(2023版)
- 儿科课件:急性细菌性脑膜炎
- 柜类家具结构设计课件
- 陶瓷瓷砖企业(陶瓷厂)全套安全生产操作规程
- 煤炭运输安全保障措施提升运输安全保障措施
- JTGT-3833-2018-公路工程机械台班费用定额
评论
0/150
提交评论