版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭二中2023-2024学年数学高一上期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是(参考数据:lg3≈048)A.1033 B.1053C.1073 D.10932.垂直于直线且与圆相切的直线的方程是AB.C.D.3.设集合,若,则实数()A.0 B.1C. D.24.,,,则()A. B.C. D.5.如果,,那么()A. B.C. D.6.已知角的终边经过点,则A. B.C.-2 D.7.直线与曲线有且仅有个公共点,则实数的取值范围是A. B.C. D.8.“是第一象限角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.满足2,的集合A的个数是A.2 B.3C.4 D.810.已知,那么()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知,则__________.12.设函数和函数,若对任意都有使得,则实数a的取值范围为______13.若函数的定义域为,则函数的定义域为______14.已知圆心角为2rad的扇形的周长为12,则该扇形的面积为____________.15.已知,且,则______三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.如图,已知矩形,,,点为矩形内一点,且,设.(1)当时,求证:;(2)求的最大值.17.已知函数为定义在R上的奇函数.(1)求实数a的值;(2)判断函数的单调性,并证明;18.若函数,.(1)当时,求函数的最小值;(2)若函数在区间上的最小值是,求实数的值.19.某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58为了预测以后各月的患病人数,甲选择的了模型,乙选择了模型,其中y为患病人数,x为月份数,a,b,c,p,q,r都是常数,结果4月,5月,6月份的患病人数分别为66,82,115,1你认为谁选择的模型较好?需说明理由2至少要经过多少个月患该传染病的人数将会超过2000人?试用你选择的较好模型解决上述问题20.计算:(1);(2)若,求的值21.已知(1)化简(2)若是第三象限角,且,求的值
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】设,两边取对数,,所以,即最接近,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令,并想到两边同时取对数进行求解,对数运算公式包含,,.2、B【解析】设所求直线方程为3x+y+c=0,则d=,解得d=±10.所以所求直线方程为3x+y+10=0或3x+y-10=0.3、B【解析】可根据已知条件,先求解出的值,然后分别带入集合A和集合B中去验证是否满足条件,即可完成求解.【详解】集合,,所以,①当时,集合,此时,成立;②当时,集合,此时,不满足题意,排除.故选:B.4、B【解析】根据对数函数和指数函数的单调性即可得出,,的大小关系【详解】,,,故选:5、D【解析】根据不等式的性质,对四个选项进行判断,从而得到答案.【详解】因为,所以,故A错误;因为,当时,得,故B错误;因为,所以,故C错误;因为,所以,故D正确.故选:D.【点睛】本题考查不等式的性质,属于简单题.6、B【解析】按三角函数的定义,有.7、A【解析】如图所示,直线过点,圆的圆心坐标直线与曲线相切时,,直线与曲线有且仅有个公共点,则实数的取值范围是考点:直线与圆相交,相切问题8、B【解析】根据充分、必要条件的定义,结合角的概念,即可得答案.【详解】若是第一象限角,则,无法得到一定属于,充分性不成立,若,则一定第一象限角,必要性成立,所以“是第一象限角”是“”的必要不充分条件.故选:B9、C【解析】由条件,根据集合的子集的概念与运算,即可求解【详解】由题意,可得满足2,的集合A为:,,,2,,共4个故选C【点睛】本题主要考查了集合的定义,集合与集合的包含关系的应用,其中熟记集合的子集的概念,准确利用列举法求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题10、B【解析】先利用指数函数单调性判断b,c和1大小关系,再判断a与1的关系,即得结果.【详解】因为在单调递增,,故,即,而,故.故选:B.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、3【解析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值.【详解】由题设,,可得,∴.故答案为:312、【解析】先根据的单调性求出的值域A,分类讨论求得的值域B,再将条件转化为A,进行判断求解即可【详解】是上的递减函数,∴的值域为,令A=,令的值域为B,因为对任意都有使得,则有A,而,当a=0时,不满足A;当a>0时,,∴解得;当a<0时,,∴不满足条件A,综上得.故答案为.【点睛】本题考查了函数的值域及单调性的应用,关键是将条件转化为两个函数值域的关系,运用了分类讨论的数学思想,属于中档题13、【解析】利用的定义域,求出的值域,再求x的取值范围.【详解】的定义域为即的定义域为故答案为:14、9【解析】根据题意条件,先设出扇形的半径和弧长,并找到弧长与半径之间的关系,通过已知的扇形周长,可以求解出扇形的半径和弧长,然后再利用完成求解.【详解】设扇形的半径为,弧长为,由已知得,圆心角,则,因为扇形的周长为12,所以,所以,,则.故答案为:9.15、##【解析】由,应用诱导公式,结合已知角的范围及正弦值求,即可得解.【详解】由题设,,又,即,且,所以,故.故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)见解析(2)【解析】(1)以为坐标原点建立平面直角坐标系,求出各点的坐标,即得,得证;(2)由三角函数的定义可设,,再利用三角函数的图像和性质求解.【详解】以为坐标原点建立平面直角坐标系,则,,,.当时,,则,,∴.∴.(2)由三角函数的定义可设,则,,,从而,所以,因为,故当时,取得最大值2.【点睛】本题主要考查平面向量的坐标表示和运算,考查向量垂直的坐标表示,考查平面向量的数量积运算和三角恒等变换,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.17、(1);(2)是R上的增函数,证明详见解析.【解析】(1)由奇函数定义可解得;(2)是上的增函数,可用定义证明.【详解】(1)因为为定义在上的奇函数,所以对任意,,即,所以,因为,所以,即.(2)由(1)知,则是上的增函数,下用定义证明.任取,且,,当时,,又,所以,即,故是上的增函数.18、(1)(2)【解析】(1)当时,,当时,函数的值最小,求解即可;(2)由于,分,,三种情况讨论,再结合题意,可得实数的值【小问1详解】解:依题意得若,则又,所以的值域为所以当时,取得最小值为小问2详解】解:∵∴所以当时,,所以,不符合题意当时,,解得当时,,得,不符合题意综上所述,实数的值为.19、(1)应将作为模拟函数,理由见解析;(2)个月.【解析】根据前3个月的数据求出两个函数模型的解析式,再计算4,5,6月的数据,与真实值比较得出结论;由(1),列不等式求解,即可得出结论【详解】由题意,把,2,3代入得:,解得,,,所以,所以,,;把,2,3代入,得:,解得,,,所以,所以,,;、、更接近真实值,应将作为模拟函数令,解得,至少经过11个月患该传染病的人数将会超过2000人【点睛】本题主要考查了函数的实际应用问题,以及指数与对数的运算性质的应用,其中解答中认真审题,正确理解题意,求解函数的解析式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.20、(1)(2)【解析】(1)根据分数指数幂、对数的运算法则及换
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度中国GNSS芯片行业研究报告:支撑物联网、车联网应用落地的核心器件
- 2024年度互联网金融服务合同:金融科技公司与用户之间的互联网金融服务协议
- 2024年度品牌合作合同主要条款
- 《机械设备道路运输安全合同》
- 2024年度工厂智能化改造合同
- 2024年度企业生产线改造合同
- 2024年度公寓工程消防验收合同
- 2024年度版权转让合同标的转让价款与权益变更
- 2024年度特许经营合同许可范围详细描述及经营规范具体规定
- 2024年度品牌授权使用合同(含区域限制)
- 技师、高级技师综合评审表格
- 城中村改造政策
- 《基于PLC的快递包裹分拣系统【设计报告(论文)】》
- 400V抽屉式开关操作流程
- 金茂府十二大科技
- 化工企业生产设备设施拆除和报废管理制度
- GB/T 8732-2014汽轮机叶片用钢
- 广东开放大学 《大学英语B》形成性考核 参考答案
- GB/T 28758-2012起重机检查人员的资格要求
- 转基因技术发展史
- 红金大气商务风领导欢迎会PPT通用模板
评论
0/150
提交评论