版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江部分地区2023-2024学年八年级数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为千米/时,则可列方程()A. B.C. D.2.等腰三角形的两边长是6cm和3cm,那么它的周长是A.9cm B.12cm C.12cm或15cm D.15cm3.下列约分正确的是()A. B. C. D.4.下列给出的四组线段中,可以构成直角三角形的是()A.4,5,6 B. C.2,3,4 D.12,9,155.如图,已知△ABC≌△CDE,下列结论中不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D6.用不等式表示如图的解集,其中正确的是()A. B.x≥2 C. D.x≤27.下列各组数中,不能作为直角三角形的三边长的是()A.7,24,25 B.9,12,15 C.,, D.,,8.估计的运算结果应在哪个两个连续自然数之间()A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣49.我市防汛办为解决台风季排涝问题,准备在一定时间内铺设一条长4000米的排水管道,实际施工时,.求原计划每天铺设管道多少米?题目中部分条件被墨汁污染,小明查看了
参考答案为:“设原计划每天铺设管道x米,则可得方程=20,…”根据答案,题中被墨汁污染条件应补为()A.每天比原计划多铺设10米,结果延期20天完成B.每天比原计划少铺设10米,结果延期20天完成C.每天比原计划多铺设10米,结果提前20天完成D.每天比原计划少铺设10米,结果提前20天完成10.如图,若AB∥CD,则α、β、γ之间的关系为()A.α+β+γ=360° B.α﹣β+γ=180°C.α+β﹣γ=180° D.α+β+γ=180°二、填空题(每小题3分,共24分)11.如图,在,,点是上一点,、分别是线段、的垂直平分线,则________.12.一次数学活动课上.小聪将一副三角板按图中方式叠放,则∠α等于_____.13.若分式的值为零,则x的值为_____.14.如图,在中,垂直平分交于点,若,,则_________________.15.已知空气的密度是0.001239,用科学记数法表示为________16.如图,在中,,,,将绕点逆时针旋转得到,连接,则的长为__________.17.如图是外周边缘为正八边形的木花窗挂件,则这个正八边形的每个内角为_______.18.若关于x的分式方程的解为正数,则满足条件的非负整数k的值为____.三、解答题(共66分)19.(10分)解方程:.20.(6分)如图,在矩形中,,垂足分别为,连接.求证:四边形是平行四边形.21.(6分)如图,一块四边形的土地,其中,,,,,求这块土地的面积.22.(8分)如图,分别以△ABC的边AB,AC向外作两个等边三角形△ABD,△ACE.连接BE、CD交点F,连接AF.(1)求证:△ACD≌△AEB;(2)求证:AF+BF+CF=CD.23.(8分)如图,点为上一点,,,,求证:.24.(8分)射击训练班中的甲、乙两名选手在5次射击训练中的成绩依次为(单位:环):甲:8,8,7,8,9乙:5,9,7,10,9教练根据他们的成绩绘制了如下尚不完整的统计图表:选手平均数众数中位数方差甲8b80.4乙α9c3.2根据以上信息,请解答下面的问题:(1)α=,b=,c=;(2)完成图中表示乙成绩变化情况的折线;(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是什么?(4)若选手乙再射击第6次,命中的成绩是8环,则选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会.(填“变大”、“变小”或“不变”)25.(10分)在边长为的小正方形组成的正方形网格中建立如图所示的平面直角坐标系,已知格点三角形(三角形的三个顶点都在小正方形的顶点上)(1)写出的面积;(2)画出关于轴对称的;(3)写出点及其对称点的坐标.26.(10分)计算①②
参考答案一、选择题(每小题3分,共30分)1、A【解析】设江水的流速为x千米/时,.故选A.点睛:点睛:本题主要考查分式方程的实际问题的应用,解题的关键是读懂题目的意思,根据题目给出的条件,设出未知数,分别找出顺水和溺水对应的时间,找出合适的等量关系,列出方程即可.2、D【解析】试题分析:题目给出等腰三角形有两条边长为6cm和3cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6﹣3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故选D.考点:等腰三角形的性质;三角形三边关系.3、C【分析】原式各项约分得到结果,即可做出判断.【详解】解:A、原式=x4,故选项错误;
B、原式=1,故选项错误;
C、原式=,故选项正确;
D、原式=,故选项错误.
故选:C.【点睛】本题考查了约分,约分的关键是找出分子分母的公因式.4、D【分析】根据勾股定理判断这四组线段是否可以构成直角三角形.【详解】A.,错误;B.当n为特定值时才成立,错误;C.,错误;D.,正确;故答案为:D.【点睛】本题考查了直角三角形的性质以及判定,利用勾股定理判断是否可以构成直角三角形是解题的关键.5、C【分析】全等三角形的对应边相等,对应角也相等.【详解】解:由全等三角形的性质可知A、B、D均正确,而∠ACB=∠CED,故C错误.故选择C.【点睛】本题考查了全等三角形的性质,注意其对应关系不要搞错.6、D【解析】解:根据“开口向左、实心”的特征可得解集为x≤2,故选D.7、C【分析】根据勾股定理依次判断各选项即可.【详解】A、,故能构成直角三角形;B、,故能构成直角三角形;C、,故不能构成直角三角形;D、,故能构成直角三角形;故选C.【点睛】本题是对勾股定理逆定理的考查,熟练掌握定理是解决本题的关键.8、C【解析】根据二次根式的性质,可化简得=﹣3=﹣2,然后根据二次根式的估算,由3<2<4可知﹣2在﹣4和﹣3之间.故选C.点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.9、B【分析】工作时间=工作总量÷工作效率.那么4000÷x表示原来的工作时间,那么4000÷(x﹣10)就表示现在的工作时间,20就代表原计划比现在多的时间.【详解】解:原计划每天铺设管道x米,那么(x﹣10)就应该是实际每天比原计划少铺了10米,而用则表示用原计划的时间﹣实际用的时间=20天,那么就说明每天比原计划少铺设10米,结果延期20天完成.故选:B.【点睛】本题考查了由实际问题抽象除法分式方程,是根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.10、C【分析】过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.【详解】解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故选:C.【点睛】本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.二、填空题(每小题3分,共24分)11、【分析】根据、分别是线段、的垂直平分线,得到BE=DE,DF=CF,由等腰三角形的性质得到∠EDB=∠B,∠FDC=∠C,根据三角形的内角和得到∠B+∠C=180−∠A,根据平角的定义即可得到结论.【详解】∵、分别是线段、的垂直平分线,∴BE=DE,DF=CF,∴∠EDB=∠B,∠FDC=∠C,∵,∴∠EDB+∠FDC=180−,∴∠B+∠C=100,∴∠A=180-100=80,故答案为:80.【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键.12、75【解析】根据两直线平行,内错角相等求出∠1的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.解:如图,∠1=30°,所以,∠=∠1+45°=30°+45°=75°.故答案为75°.“点睛”本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.13、1【分析】由题意根据分式的值为0的条件是分子为0,分母不能为0,据此可以解答本题.【详解】解:,则x﹣1=0,x+1≠0,解得x=1.故若分式的值为零,则x的值为1.故答案为:1.【点睛】本题考查分式的值为0的条件,注意掌握分式为0,分母不能为0这一条件.14、【分析】由勾股定理得到的长度,利用等面积法求,结合已知条件得到答案.【详解】解:垂直平分,故答案为:.【点睛】本题考查的是勾股定理的应用,等面积法的应用,掌握以上知识是解题的关键.15、1.239×10-3.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.001239=1.239×10-3故答案为:1.239×10-3.【点睛】本题考查了科学记数法的表示,熟练掌握n的值是解题的关键.16、【分析】根据旋转的性质可得出,在中利用勾股定理求解即可.【详解】解:∵,,,∴,∵将绕点逆时针旋转得到,∴∴∴在中,.故答案为:.【点睛】本题考查的知识点是旋转的性质以及勾股定理,利用旋转的性质得出是解此题的关键.17、135°【分析】根据正多边形的内角和公式计算即可.【详解】∵八边形的内角和为(8-2)×180°=1080°,∴正八边形的每个内角为1080°÷8=135°,故答案为:135°.【点睛】本题考查了正多边形的内角和,掌握知识点是解题关键.18、1.【分析】首先解分式方程,然后根据方程的解为正数,可得x>1,据此求出满足条件的非负整数K的值为多少即可.【详解】∵,∴.∵x>1,∴,∴,∴满足条件的非负整数的值为1、1,时,解得:x=2,符合题意;时,解得:x=1,不符合题意;∴满足条件的非负整数的值为1.故答案为:1.【点睛】此题考查分式方程的解,解题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于1的值,不是原分式方程的解.三、解答题(共66分)19、.【解析】解分式方程去分母转化成一元一次方程,分式方程一定要检验20、见解析【分析】AC,BD的交点记为点O,根据矩形的性质得出BC=DA,OD=OB,OA=OC,根据HL证出Rt△AED≌Rt△CFB,从而得出AE=CF,从而得出OE=OF,再结合BO=DO即可证得四边形BEDF是平行四边形.【详解】证明:AC,BD的交点记为点O,∵四边形ABCD为矩形,∴AD=BC,OD=OB,OA=OC.又∵DE⊥AC,BF⊥AC且DE=BF,∴Rt△AED≌Rt△CFB,∴AE=CF,∴OE=OF.∴四边形DEBF为平行四边形.【点睛】本题考查了全等三角形的判定与性质,平行四边形的判定,熟练掌握基本性质与判定方法并准确识图是解题的关键.21、36cm2【分析】根据勾股定理逆定理证BD⊥BC,再根据四边形ABCD的面积=△ABD的面积+△BCD的面积.【详解】解:∵AD=3cm,AB=4cm,∠BAD=90°,
∴BD=5cm.
又∵BC=12cm,CD=13cm,
∴BD2+BC2=CD2.
∴BD⊥BC.
∴四边形ABCD的面积=△ABD的面积+△BCD的面积==6+30=36(cm2).
故这块土地的面积是36m2.【点睛】考核知识点:勾股定理逆定理应用.推出直角三角形,再求三角形面积是关键.22、(1)证明见解析;(2)证明见解析.【分析】(1)根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAB=60,根据全等三角形的判定定理即可得到结论;(2)如图,延长FB至K,使FK=DF,连DK,根据等边三角形的性质和全等三角形的判定和性质定理即可得到结论.【详解】(1)∵△ABD和△ACE为等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAB=60°,∴∠DAC=∠BAE=60°+∠BAC.在△ACD和△AEB中,∵,∴△ACD≌△AEB(SAS);(2)由(1)知∠CDA=∠EBA,如图∠1=∠2,∴180°﹣∠CDA﹣∠1=180°﹣∠EBA﹣∠2,∴∠DAB=∠DFB=60°,如图,延长FB至K,使FK=DF,连DK,∴△DFK为等边三角形,∴DK=DF,∴△DBK≌△DAF(SAS),∴BK=AF,∴DF=DK,FK=BK+BF,∴DF=AF+BF,又∵CD=DF+CF,∴CD=AF+BF+CF.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,正确的作出辅助线是解题的关键.23、详见解析【分析】根据同角的补角相等可得∠DBA=∠BEC,然后根据平行线的性质可得∠A=∠C,再利用AAS即可证出△ADB≌△CBE,从而证出结论.【详解】证明:∵,∠DBC+∠DBA=180°∴∠DBA=∠BEC∵∴∠A=∠C在△ADB和△CBE中∴△ADB≌△CBE,∴AD=BC.【点睛】此题考查的是补角的性质、平行线的性质和全等三角形的判定及性质,掌握同角的补角相等、平行线的性质和全等三角形的判定及性质是解决此题的关键.24、(1):8,8,9;(2)见解析;(3)两人的平均成绩相同,而甲的成绩的方差小,即甲的成绩较稳定;(4)变小.【解析】(1)依据平均数、众数以及中位数的概念进行计算判断即可;
(2)依据乙的成绩:5,9,7,10,9,即可完成图中表示乙成绩变化情况的折线;
(3)两人的平均成绩相同,而甲的成绩的方差小,即甲的成绩较稳定,故选择甲参加射击比赛;
(4)依据选手乙这6次射击成绩5,9,7,10,9,8,即可得到方差的大小.【详解】解:(1)由题可得,a=(5+9+7+10+9)=8;甲的成绩7,8,8,8,9中,8出现的次数最多,故众数b=8;而乙的成绩5,7,9,9,10中,中位数c=9;故答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海工商外国语职业学院《PC技术与应用》2023-2024学年第一学期期末试卷
- 哮病护理查房
- 精-品解析:广东省深圳实验学校高中部2023-2024学年高一上学期第三阶段考试化学试题(解析版)
- 悬臂泵课程设计
- 捉蝴蝶游戏课程设计
- 少队活动精忠报国说课稿
- 2024年秋季小学数学北京课改版五年级【数学(北京版)】用字母表示数(第一课时)-1教学设计
- 彩虹桥中班绘画课程设计
- 思维训练托育课程设计
- 打地鼠c 课程设计
- 统计信号分析知到智慧树章节测试课后答案2024年秋哈尔滨工程大学
- 浙江省2023年1月学业考试物理物理试题(解析版)
- 浅谈离子交换树脂在精制糖行业中的应用
- 管道定额价目表
- 新时期如何做好档案管理课件
- 真崎航の21部
- 复兴号动车组空调系统设计优化及应用
- 矿山压力与岩层控制课程设计.doc
- 《房产测量规范》和《建筑面积计算规范》的区别
- 污水管网工程施工总结
- 消防维保灭火器维修维保技术方案
评论
0/150
提交评论