云南省宣威市六中2023年高一上数学期末经典模拟试题含解析_第1页
云南省宣威市六中2023年高一上数学期末经典模拟试题含解析_第2页
云南省宣威市六中2023年高一上数学期末经典模拟试题含解析_第3页
云南省宣威市六中2023年高一上数学期末经典模拟试题含解析_第4页
云南省宣威市六中2023年高一上数学期末经典模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省宣威市六中2023年高一上数学期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.尽管目前人类还无法精准预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量E(单位:焦耳)与地震里氏震级之间的关系式为.年月日,日本东北部海域发生里氏级地震,它所释放出来的能量是年月日我国四川九寨沟县发生里氏级地震的()A.倍 B.倍C.倍 D.倍2.如图所示的四个几何体,其中判断正确的是A.(1)不棱柱B.(2)是棱柱C.(3)是圆台D.(4)是棱锥3.已知,则的值为()A.-4 B.4C.-8 D.84.已知=(4,5),=(-3,4),则-4的坐标是()A(16,11) B.(-16,-11)C.(-16,11) D.(16,-11)5.已知,若,则()A. B.C. D.6.设全集,集合,,则A.{4} B.{0,1,9,16}C.{0,9,16} D.{1,9,16}7.若:,则成立的一个充分不必要条件是()A. B.C. D.8.函数的图象如图所示,则在区间上的零点之和为()A. B.C. D.9.已知函数为定义在上的偶函数,在上单调递减,并且,则实数的取值范围是()A. B.C. D.10.命题,则命题p的否定是()A. B.C. D.11.如果命题“使得”是假命题,那么实数的取值范围是()A. B.C. D.12.已知函数在区间上是单调增函数,则实数的取值范围为()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知直线,则与间的距离为___________.14._____.15.已知函数的图上存在一点,函数的图象上存在一点,恰好使两点关于直线对称,则满足上述要求的实数的取值范围是___________16.已知,,则_____;_____三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知,函数.(1)求函数的定义域;(2)求函数的零点;(3)若函数的最大值为2,求的值.18.已知函数(,且)(1)求的值及函数的定义域;(2)若函数在上的最大值与最小值之差为3,求实数的值19.已知二次函数的图象关于直线对称,且关于的方程有两个相等的实数根.(1)的值域;(2)若函数且在上有最小值,最大值,求的值.20.已知函数,,(1)求的解析式和最小正周期;(2)求在区间上的最大值和最小值21.设是两个不共线的非零向量.(1)若求证:A,B,D三点共线;(2)试求实数k的值,使向量和共线.22.证明:函数是奇函数.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】设里氏级和级地震释放出的能量分别为和,可得出,利用对数的运算性质可求得的值,即可得解.【详解】设里氏级和级地震释放出的能量分别为和,由已知可得,则,故故选:C.2、D【解析】直接利用多面体和旋转体的结构特征,逐一核对四个选项得答案解:(1)满足前后面互相平行,其余面都是四边形,且相邻四边形的公共边互相平行,∴(1)是棱柱,故A错误;(2)中不满足相邻四边形的公共边互相平行,∴(2)不是棱柱,故B错误;(3)中上下两个圆面不平行,不符合圆台的结构特征,∴(3)不是圆台,故C错误;(4)符合棱锥的结构特征,∴(4)是棱锥,故D正确故选D考点:棱锥的结构特征3、C【解析】由已知条件,结合同角正余弦的三角关系可得,再将目标式由切化弦即可求值.【详解】由题意知:,即,∴,而.故选:C.【点睛】本题考查了同角三角函数关系,应用了以及切弦互化求值,属于基础题.4、D【解析】直接利用向量的坐标运算求解.【详解】-4.故选:D5、C【解析】设,求出,再由求出.【详解】设,因为所以,又,所以,所以.故选:C.6、B【解析】根据集合的补集和交集的概念得到结果即可.【详解】全集,集合,,;,故答案为B.【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算7、C【解析】根据不等式的解法求得不等式的解集,结合充分条件、必要条件的判定方法,即可求解.【详解】由题意,不等式,可得,解得,结合选项,不等式的一个充分不必要条件是.故选:C.8、D【解析】先求出周期,确定,再由点确定,得函数解析式,然后可求出上的所有零点【详解】由题意,∴,又且,∴,∴由得,,,在内有:,它们的和为故选:D9、D【解析】利用函数的奇偶性得到,再解不等式组即得解.【详解】解:由题得.因为在上单调递减,并且,所以,所以或.故选:D10、A【解析】全称命题的否定是特称命题,并将结论加以否定.【详解】因为命题,所以命题p的否定是,故选:A.11、B【解析】特称命题是假命题,则该命题的否定为全称命题且是真命题,然后根据即可求解.【详解】依题意,命题“使得”是假命题,则该命题的否定为“”,且是真命题;所以,.故选:B12、B【解析】根据二次函数的图象与性质,可知区间在对称轴的右面,即,即可求得答案.【详解】函数为对称轴开口向上的二次函数,在区间上是单调增函数,区间在对称轴的右面,即,实数的取值范围为.故选B.【点睛】本题考查二次函数的图象与性质,明确二次函数的对称轴、开口方向与函数的单调性的关系是解题关键.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据平行线间距离直接计算.【详解】由已知可得两直线互相平行,故,故答案为:.14、【解析】利用诱导公式变形,再由两角和的余弦求解【详解】解:,故答案为【点睛】本题考查诱导公式的应用,考查两角和的余弦,是基础题15、【解析】函数g(x)=lnx的反函数为,若函数f(x)的图象上存在一点P,函数g(x)=lnx的图象上存在一点Q,恰好使P、Q两点关于直线y=x对称,则函数g(x)=lnx的反函数图象与f(x)图象有交点,即在x∈R上有解,,∵x∈R,∴∴即.三、16、①.②.【解析】利用指数式与对数的互化以及对数的运算性质化简可得结果.【详解】因为,则,故.故答案为:;2三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)零点为或;(3).【解析】(1)由函数的解析式可得,解可得的取值范围,即可得答案,(2)根据题意,由函数零点的定义可得,即,解可得的值,即可得答案,(3)根据题意,将函数的解析式变形可得,设,分析的最大值可得的最大值为,则有,解可得的值,即可得答案.【详解】解:(1)根据题意,,必有,解可得,即函数的定义域为,(2),若,即,即,解可得:或,即函数的零点为或,(3),设,,则,有最大值4,又由,则函数有最大值,则有,解可得,故.18、(1)0;;(2)或.【解析】(1)代入计算得,由对数有意义列出不等式求解作答.(2)由a值分类讨论单调性,再列式计算作答.【小问1详解】函数,则,由解得:,所以的值是0,的定义域是.【小问2详解】当时,在上单调递减,,,于是得,即,解得,则,当时,在上单调递增,,,于是得,即,解得,则,所以实数的值为或.19、(1)(2)或【解析】(1)由题意可得且,从而可求出的值,则得,然后求出的值域,进而可求出的值域,(2)函数,设,则,然后分和两种情况求的最值,列方程可求出的值【小问1详解】根据题意,二次函数的图象关于直线对称,则有,即,①又由方程即有两个相等的实数根,则有,②联立①②可得:,,则,则有,则,即函数的值域为;【小问2详解】根据题意,函数,设,则,当时,,则有,而,若函数在上有最小值,最大值,则有,解可得,即,当时,,则有,而,若函数在上有最小值,最大值,则有,解可得,即,综合可得:或20、(1),;(2)最大值2,最小值【解析】(1)先将代入,结合求出函数解析式,再用公式求出最小正周期.(2)根据,求出的范围,再求出的范围,即可得出在区间上的最大值和最小值.【详解】解:(1)因为,,所以,所以,又因为,所以,故的解析式为,所以的最小正周期为.(2)因为,所以,所以,则,故在区间上的最大值2,最小值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论