云天化中学2023年数学高一上期末调研模拟试题含解析_第1页
云天化中学2023年数学高一上期末调研模拟试题含解析_第2页
云天化中学2023年数学高一上期末调研模拟试题含解析_第3页
云天化中学2023年数学高一上期末调研模拟试题含解析_第4页
云天化中学2023年数学高一上期末调研模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云天化中学2023年数学高一上期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.设集合,则集合的元素个数为()A.0 B.1C.2 D.32.已知是的三个内角,设,若恒成立,则实数的取值范围是()A. B.C. D.3.为了得到函数的图象,只要把函数图象上所有的点()A.横坐标伸长到原来的2倍,纵坐标不变B.横坐标缩短到原来的倍,纵坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.纵坐标缩短到原来的倍,横坐标不变4.已知角的终边在射线上,则的值为()A. B.C. D.5.已知,条件:,条件:,则是的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.已知集合M={x|0≤x<2},N={x|x2-2x-3<0},则M∩N=()A.{x|0≤x<1} B.{x|0≤x<2}C.{x|0≤x≤1} D.{x|0≤x≤2}7.已知集合,,若,则实数的值为()A. B.C. D.8.下列说法正确的是()A.若,,则 B.若a,,则C.若,,则 D.若,则9.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学学习和研究中,我们要学会以形助数.则在同一直角坐标系中,与的图像可能是()A. B.C. D.10.某四面体的三视图如图,则该四面体的体积是A.1 B.C. D.2二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.在中,,,,若将绕直线旋转一周,则所形成的几何体的体积是__________12.函数的定义域是___________,若在定义域上是单调递增函数,则实数的取值范围是___________13.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.14.据资料统计,通过环境整治.某湖泊污染区域的面积与时间t(年)之间存在近似的指数函数关系,若近两年污染区域的面积由降至.则使污染区域的面积继续降至还需要_______年15.在正三角形中,是上的点,,则________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知,(1)若,求(2)若,求实数的取值范围.17.如图,在棱长为2的正方体中,E,F分别是棱的中点.(1)证明:平面;(2)求三棱锥的体积.18.为保护环境,污水进入河流前都要进行净化处理.我市工业园区某工厂的污水先排入净化池,然后加入净化剂进行净化处理.根据实验得出,在一定范围内,每放入1个单位的净化剂,在污水中释放的浓度y(单位:毫克/立方米)随着时间x(单位:小时)变化的函数关系式近似为.若多次加进净化剂,则某一时刻净化剂在污水中释放的浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当净化剂在污水中释放的浓度不低于4(毫克/立方米)时,它才能起到净化污水的作用.(1)若投放1个单位的净化剂4小时后,求净化剂在污水中释放的浓度;(2)若一次投放4个单位的净化剂并起到净化污水的作用,则净化时间约达几小时?(结果精确到0.1,参考数据:,)(3)若第一次投放1个单位的净化剂,3小时后再投放2个单位的净化剂,设第二次投放t小时后污水中净化剂浓度为(毫克/立方米),其中,求的表达式和浓度的最小值.19.已知的图象上相邻两对称轴的距离为.(1)若,求的递增区间;(2)若时,若最大值与最小值之和为5,求的值.20.已知函数在上最大值为3,最小值为(1)求的解析式;(2)若,使得,求实数m的取值范围21.已知函数是定义在1,1上的奇函数,且.(1)求m,n的值;(2)判断在1,1上的单调性,并用定义证明;(3)设,若对任意的,总存在,使得成立,求实数k的值.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】解出集合中的不等式,得到集合中的元素,利用交集的运算即可得到结果.【详解】集合,所以.故选:B.2、D【解析】先化简,因为恒成立,所以恒成立,即恒成立,所以,故选D.考点:三角函数二倍角公式、降次公式;3、B【解析】直接利用三角函数伸缩变换法则得到答案.【详解】为了得到函数的图象,只需把函数的图象上所有的点横坐标缩短到原来的倍,纵坐标不变.故选:B4、A【解析】求三角函数值不妨作图说明,直截了当.【详解】依题意,作图如下:假设直线的倾斜角为,则角的终边为射线OA,在第四象限,,,,用同角关系:,得;∴;故选:A.5、C【解析】分别求两个命题下的集合,再根据集合关系判断选项.【详解】,则,,则,因为,所以是充分必要条件.故选:C6、B【解析】先化简集合N,再进行交集运算即得结果.【详解】由于N={x|x2-2x-3<0}={x|-1<x<3},M={x|0≤x<2},所以M∩N={x|0≤x<2}故选:B.7、B【解析】根据集合,,可得,从而可得.【详解】因为,,所以,所以.故选:B8、C【解析】结合特殊值、差比较法确定正确选项.【详解】A:令,;,,则,,不满足,故A错误;B:a,b异号时,不等式不成立,故B错误;C:,,,,即,故C正确;D:令,,不成立,故D错误.故选:C9、B【解析】结合指数函数和对数函数的图像即可.【详解】是定义域为R的增函数,:-x>0,则x<0.结合选项只有B符合故选:B10、B【解析】在正方体ABCD­A1B1C1D1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D1­BCB1,如图所示,该四面体的体积为.故选B点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以OA=,OB=1所以旋转体的体积:故答案为.12、①.##②.【解析】根据对数函数的定义域求出x的取值范围即可;结合对数复合型函数的单调性与一次函数的单调性即可得出结果.【详解】由题意知,,得,即函数的定义域为;又函数在定义域上单调增函数,而函数在上单调递减,所以函数为减函数,故.故答案为:;13、3【解析】根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2,所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,在[50,60)年龄段抽取人数为【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题14、2【解析】根据已知条件,利用近两年污染区域的面积由降至,求出指数函数关系的底数,再代入求得污染区域将至还需要的年数.【详解】设相隔为t年的两个年份湖泊污染区域的面积为和,则可设由题设知,,,,即,解得,假设需要x年能将至,即,,,解得所以使污染区域的面积继续降至还需要2年.故答案为:215、【解析】根据正三角形的性质以及向量的数量积的定义式,结合向量的特点,可以确定,故答案为考点:平面向量基本定理,向量的数量积,正三角形的性质三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)【解析】(1)先化简集合A和集合B,再求.(2)由A得再因为得到,即得.【详解】(1)当时,有得,由知得或,故.(2)由知得,因为,所以,得.【点睛】本题主要考查集合的化简运算,考查集合中的参数问题,考查绝对值不等式和对数不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.17、(1)证明见解析(2)【解析】(1)连接,设,连接EF,EO,利用中位线和正方体的性质证明四边形是平行四边形,进而可证平面;(2)由平面可得点F,到平面的距离相等,则,进而求得三棱锥的体积即可【详解】(1)证明:连接,设,连接EF,EO,因为E,F分别是棱的中点,所以,,因为正方体,所以,,所以,,所以四边形是平行四边形,所以,又平面,平面,所以平面(2)由(1)可得点F,到平面的距离相等,所以,又三棱锥的高为棱长,即,,所以.所以【点睛】本题考查线面平行的证明,考查三棱锥的体积,考查转化思想18、(1)6毫克/立方米(2)7.1(3),;的最小值为12毫克/立方米【解析】(1)由函数解析式,将代入即可得解;(2)分和两种情况讨论,根据题意列出不等式,从而可得出答案;(3)根据题意写出函数的解析式,再根据基本不等式即可求得最小值.【小问1详解】解:由,当时,,所以若投放1个单位的净化剂4小时后,净化剂在污水中释放的浓度为6毫克/立方米;【小问2详解】解:因为净化剂在污水中释放的浓度不低于4(毫克/立方米)时,它才能起到净化污水的作用,当时,令,得恒成立,所以当时,起到净化污水的作用,当时,令,得,则,所以,综上所述当时,起到净化污水的作用,所以若一次投放4个单位的净化剂并起到净化污水的作用,则净化时间约达7.1小时;【小问3详解】解:因为第一次投入1个单位的净化剂,3小时后再投入2个单位净化剂,要计算的是第二次投放t小时后污水中净化剂浓度为,所以,,因为,所以,当且仅当,即时取等号,所以,,当时,取最小值12毫克/立方米.19、(1)增区间是[kπ-,kπ+],k∈Z(2)【解析】首先根据已知条件,求出周期,进而求出的值,确定出函数解析式,由正弦函数的递增区间,,即可求出的递增区间由确定出的函数解析式,根据的范围求出这个角的范围,利用正弦函数的图象与性质即可求出函数的最大值,即可得到的值解析:已知由,则T=π=,∴w=2∴(1)令-+2kπ≤2x+≤+2kπ则-+kπ≤x≤+kπ故f(x)的增区间是[kπ-,kπ+],k∈Z(2)当x∈[0,]时,≤2x+≤∴sin(2x+)∈[-,1]∴∴点睛:这是一道求三角函数递增区间以及利用函数在某区间最大值求得参数的题目,主要考查了两角和的正弦函数公式,正弦函数的单调性,以及正弦函数的定义域和值域,解题的关键是熟练掌握正弦函数的性质,属于中档题20、(1)(2)【解析】(1)根据的最值列方程组,解方程组求得,进而求得.(2)利用分离常数法,结合基本不等式求得的取值范围.【小问1详解】的开口向上,对称轴为,所以在区间上有:,即,所以.【小问2详解】依题意,使得,即,由于,,当且仅当时等号成立.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论