




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江绍兴一中2023年数学高一上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知实数满足,则函数的零点所在的区间是()A. B.C. D.2.若集合,,则A. B.C. D.3.已知,,则A. B.C. D.4.设,满足约束条件,则的最小值与最大值分别为()A., B.2,C.4,34 D.2,345.设集合,集合,则等于()A(1,2) B.(1,2]C.[1,2) D.[1,2]6.若集合,则()A. B.C. D.7.已知直线,与平行,则的值是()A0或1 B.1或C.0或 D.8.设,则A. B.0C.1 D.9.已知函数,则的值等于A. B.C. D.10.若函数的图象与轴有交点,且值域,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数y=cos2x-sinx的值域是__________________12.已知圆C:(x﹣2)2+(y﹣1)2=10与直线l:2x+y=0,则圆C与直线l的位置关系是_____13.等腰直角△ABC中,AB=BC=1,M为AC的中点,沿BM把△ABC折成二面角,折后A与C的距离为1,则二面角C—BM—A的大小为_____________.14.设函数的定义域为,若函数满足条件:存在,使在上的值域是,则称为“倍缩函数”.若函数为“倍缩函数”,则实数的取值范围是_______15.已知函数,则___________.16.设函数.则函数的值域为___________;若方程在区间上的四个根分别为,,,,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.求:(1)函数的单调递减区间,对称轴,对称中心;(2)当时,函数的值域18.已知为角终边上的一点(1)求的值(2)求的值19.在①函数的图象向右平移个单位长度得到的图象,且图象关于原点对称;②向量,,,;③函数.在以上三个条件中任选一个,补充在下面问题中空格位置,并解答.已知______,函数的图象相邻两条对称轴之间的距离为.(1)若,且,求的值;(2)求函数在上的单调递减区间.20.已知函数是上的奇函数.(1)求的值;(2)比较与0的大小,并说明理由.21.已知线段的端点的坐标为,端点在圆上运动.(1)求线段中点的轨迹的方程;(2)若一光线从点射出,经轴反射后,与轨迹相切,求反射光线所在的直线方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由已知可得,结合零点存在定理可判断零点所在区间.【详解】由已知得,所以,又,,,,所以零点所在区间为,故选:B.2、C【解析】因为集合,,所以A∩B=x故选C.3、C【解析】由已知可得,故选C考点:集合的基本运算4、D【解析】画出约束条件表示的可行域,通过表达式的几何意义,判断最大值与最小值时的位置求出最值即可【详解】解:由,满足约束条件表示的可行域如图,由,解得的几何意义是点到坐标原点的距离的平方,所以的最大值为,的最小值为:原点到直线的距离故选D【点睛】本题考查简单的线性规划的应用,表达式的几何意义是解题的关键,考查计算能力,属于常考题型.5、B【解析】由指数函数、对数函数的性质可得、,再由交集的运算即可得解.【详解】因为,,所以.故选:B.【点睛】本题考查了指数不等式的求解及对数函数性质的应用,考查了集合交集的运算,属于基础题.6、B【解析】集合、与集合之间的关系用或,元素0与集合之间的关系用或,ACD选项都使用错误。【详解】,只有B选项的表示方法是正确的,故选:B。【点睛】本题考查了元素与集合、集合与集合之间的关系的表示方法,注意集合与集合之间的关系是子集(包含于),元素与集合之间的关系是属于或不属于。本题属于基础题。7、C【解析】由题意得:或,故选C.考点:直线平行的充要条件8、B【解析】详解】故选9、C【解析】因为,所以,故选C.10、D【解析】由函数有零点,可求得,由函数的值域可求得,综合二者即可得到的取值范围.【详解】定义在上的函数,则,由函数有零点,所以,解得;由函数的值域,所以,解得;综上,的取值范围是故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将原函数转换成同名三角函数即可.【详解】,,当时取最大值,当时,取最小值;故答案为:.12、相交【解析】根据题意只需判断圆心到直线的距离与半径比较大小即可判断详解】由题意有圆心,半径则圆心到直线的距离故直线与圆C相交故答案为:相交【点睛】本题主要考查直线和圆的位置关系的判断,属于基础试题13、【解析】分别计算出的长度,然后结合二面角的求法,找出二面角,即可.【详解】结合题意可知,所以,而发现所以,结合二面角找法:如果两平面内两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角,故为所求的二面角,为【点睛】本道题目考查了二面角的求法,寻求二面角方法:两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角14、【解析】由题意得,函数是增函数,构造出方程组,利用方程组的解都大于0,求出t的取值范围.【详解】因为函数为“倍缩函数”,即满足存在,使在上的值域是,由复合函数单调性可知函数在上是增函数所以,则,即所以方程有两个不等实根,且两根都大于0.令,则,所以方程变为:.则,解得所以实数的取值范围是.故答案为:15、【解析】利用函数的解析式由内到外逐层计算可得的值.【详解】因为,则,故.故答案为:.16、①.②.【解析】根据二倍角公式,化简可得,分别讨论位于第一、二、三、四象限,结合辅助角公式,可得的解析式,根据的范围,即可得值域;作出图象与,结合图象的对称性,可得答案.【详解】由题意得当时,即时,,又,所以;当时,即时,,又,所以;当时,即时,,又,所以;当时,即时,,又,所以;综上:函数的值域为.因为,所以,所以,作出图象与图象,如下如所示由图象可得,所以故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)单调递减区间为;对称轴为,;对称中心为,;(2)【解析】(1)首先化简函数解析式得到,然后结合函数的图象与性质即可求出单调递减区间,对称轴和对称中心;(2)由求得,即可求出值域.【详解】(1)化简可得,由,,可得,,∴函数的单调递减区间为,令,可得,故函数的对称轴为,;令,得,故函数的对称中心为,(2)当时,,∴,∴,∴函数的值域为18、(1);(2)【解析】分析:(1)直接利用三角函数的坐标定义求的值.(2)先求的值,再求的值.详解:(1)由题得(2)∵在第一象限,∴∴点睛:(1)本题主要考查三角函数坐标定义和同角的三角函数关系,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)点p(x,y)是角终边上的任意的一点(原点除外),r代表点到原点的距离,则sin=cos=tan=.19、(1)(2),【解析】(1)若选条件①,根据函数的周期性求出,再根据三角函数的平移变换规则及函数的对称性求出,即可得到函数解析式,再求出的值,最后代入计算可得;若选条件②,根据平面向量数量积的坐标表示及三角恒等变换化简函数解析式,再根据周期性求出,即可得到函数解析式,再求出的值,最后代入计算可得;若选条件③,利用两角和的正弦公式及二倍角公式、辅助角公式将函数化简,再根据周期性求出,即可得到函数解析式,再求出的值,最后代入计算可得;(2)根据正弦函数的性质求出函数的单调递减区间,再根据函数的定义域令和,即可求出函数在指定区间上的单调递减区间;【小问1详解】解:若选条件①:由题意可知,,,,,又函数图象关于原点对称,所以,,,,,,,,,,若选条件②:因,,,,所以又,,,,,;若选条件③:,又,,,,,;【小问2详解】解:由,,解得,,令,得,令,得,函数在上的单调递减区间为,20、(1);(2)【解析】(1)由奇函数的性质列式求解;(2)先判断函数的单调性,然后求解,利用单调性与奇偶性即可判断出.【小问1详解】因为是上的奇函数,所以,得时,,满足为奇函数,所以.【小问2详解】设,则,因,所以,所以,即,所以函数在上为增函数,又因为为上的奇函数,所以函数在上为增函数,因为,即,所以,因为是上的奇函数,所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 职高课堂自习管理制度
- 能源节能监测管理制度
- 机房挖矿严查方案(3篇)
- 绿色施工各种管理制度
- 社区学校财产管理制度
- 生产车间板材管理制度
- 监控系统使用管理制度
- 目标资源过程管理制度
- 社区在职党员管理制度
- 药品动态监测管理制度
- 02565+24273中医药学概论
- 电力铁塔灌注桩施工方案
- 北京理工大学《数据结构与算法设计》2022-2023学年第一学期期末试卷
- 《工程档案管理培训》课件
- 矿井通风机停电停风事故专项应急预案样本(2篇)
- 公交从业人员消防知识、应急技能培训课件(新)
- 光伏项目合伙投资协议书
- 员工离职协议书模板
- 小讲课阑尾炎病人的护理护理病历临床病案
- 珩磨操作规程有哪些(6篇)
- 2005到2016年河北省中考数学试题及答案
评论
0/150
提交评论