浙江省杭州市萧山区城厢片2024届八年级数学第一学期期末监测模拟试题含解析_第1页
浙江省杭州市萧山区城厢片2024届八年级数学第一学期期末监测模拟试题含解析_第2页
浙江省杭州市萧山区城厢片2024届八年级数学第一学期期末监测模拟试题含解析_第3页
浙江省杭州市萧山区城厢片2024届八年级数学第一学期期末监测模拟试题含解析_第4页
浙江省杭州市萧山区城厢片2024届八年级数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州市萧山区城厢片2024届八年级数学第一学期期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在中,其中,的平分线交于点,是的垂直平分线,点是垂足.已知,则图中长度为的线段有()A.1条 B.2条 C.3条 D.4条2.已知图中的两个三角形全等,则∠1等于()A.72° B.60° C.50° D.58°3.若,则下列不等式成立的是()A. B. C. D.4.要反映我市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图 B.扇形统计图 C.折线统计图 D.统计表5.在平面直角坐标系中,点P(﹣,﹣2)关于原点对称的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.00000000034米,将这个数用科学记数法表示为A. B. C. D.7.在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(﹣2,1)8.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是().A. B. C. D.9.下列运算正确的是()A. B. C. D.10.老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,再将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.老师:,甲:,乙:,丙:,丁:1接力中,计算出现错误的是().A.甲 B.乙 C.丙 D.丁11.下列各式不能运用平方差公式计算的是()A. B.C. D.12.已知的三边长分别为,且那么()A. B. C. D.二、填空题(每题4分,共24分)13.若x,y为实数,且,则的值为____14.约分:_______.15.11的平方根是__________.16.若三角形的三边满足a:b:c=5:12:13,则这个三角形中最大的角为_____度.17.有6个实数:,,,,,,其中所有无理数的和为______.18.如图,已知中,,,垂足为点D,CE是AB边上的中线,若,则的度数为____________.三、解答题(共78分)19.(8分)如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:△ABC≌△CED.20.(8分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.21.(8分)如图,已知四边形ABCD,AB=DC,AC、BD交于点O,要使,还需添加一个条件.请从条件:(1)OB=OC;(2)AC=DB中选择一个合适的条件,并证明你的结论.解:我选择添加的条件是____,证明如下:22.(10分)如图,已知线段AB,根据以下作图过程:(1)分别以点A、点B为圆心,大于AB长的为半径作弧,两弧相交于C、D两点;(2)过C、D两点作直线CD.求证:直线CD是线段AB的垂直平分线.23.(10分)如图1所示,在△ABC中,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,连接AM、AN.(1)求证:△AMN的周长=BC;(2)若AB=AC,∠BAC=120°,试判断△AMN的形状,并证明你的结论;(3)若∠C=45°,AC=3,BC=9,如图2所示,求MN的长.24.(10分)已知:如图,在△ABC中,∠ACB=90°,点D是斜边AB的中点,DE∥BC,且CE=CD.(1)求证:∠B=∠DEC;(2)求证:四边形ADCE是菱形.25.(12分)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=6,AC=10,EC=,求EF的长.26.如图,在中,,点分别在上,,与相交于点.(1)求证:.(2)若,则求长.

参考答案一、选择题(每题4分,共48分)1、C【分析】由角平分线的性质可得,垂直平分线的性质可得,然后通过勾股定理计算一下其他的线段的长度,从而可得出答案.【详解】∵BD平分,,∵是的垂直平分线在和中,∴长度为的线段有AB,BE,EC故选:C.【点睛】本题主要考查角平分线的性质及垂直平分线的性质,掌握角平分线的性质和垂直平分线的性质是解题的关键.2、D【分析】相等的边所对的角是对应角,根据全等三角形对应角相等可得答案.【详解】左边三角形中b所对的角=180°-50°-72°=58°,∵相等的边所对的角是对应角,全等三角形对应角相等∴∠1=58°故选D.【点睛】本题考查全等三角形的性质,找准对应角是解题的关键.3、C【分析】根据不等式的性质依次分析判断即可.【详解】A、,则,所以,故A错误;B、,则,故B错误;C、,,故C正确;D、,则,故D错误;故选C.【点睛】本题主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4、C【解析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.根据扇形统计图、折线统计图、条形统计图各自的特点来判断即可.【详解】折线统计图表示的是事物的变化情况,石城县一周内每天的最高气温的变化情况,宜采用折线统计图.故选:C【点睛】此题考查统计图的选择,解题关键在于熟练掌握各种统计图的应用.5、A【分析】作出点P关于原点对称的点的坐标,然后判断所在的象限.【详解】∵P(﹣,﹣2)关于原点对称的点的坐标是(,2)∴点P(﹣,﹣2)关于原点对称的点在第一象限.故选:A.【点睛】本题考查了关于原点对称的点的问题,掌握关于原点对称的点的性质、象限的性质以及判断方法是解题的关键.6、C【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).0.00000000034第一个有效数字前有10个0(含小数点前的1个0),从而.故选C.7、A【解析】点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.8、C【分析】根据中心对称图形定义分析.【详解】A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C.此图形旋转180°后能与原图形重合,此图形是中心对称图形,故此选项正确;D∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误.故选C.【点睛】考点:中心对称图形.9、C【分析】根据合并同类项法则、同底数幂乘除法法则和幂的乘方法则逐项判断即可.【详解】解:A.,故错误;B.,故错误;C.,正确,D.,故错误;故选C.【点睛】本题考查了合并同类项,同底数幂乘除法以及幂的乘方,熟练掌握运算法则是解题关键.10、B【分析】检查四名同学的结论,找出错误的步骤即可.【详解】出现错误的是乙,正确结果为:,故选:B.【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.11、C【分析】运用平方差公式时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】解:、两项都是相同的项,不能运用平方差公式;、、中均存在相同和相反的项,故选:.【点睛】本题考查了平方差公式的应用,熟记公式是解题的关键.12、D【分析】根据三角形的三边关系即可求解.【详解】∵的三边长分别为∴>0,>0,<0∴<0故选D.【点睛】此题主要考查三角形的三边关系的应用,解题的关键是熟知两边之和大于第三边.二、填空题(每题4分,共24分)13、【分析】根据非负数(式)的性质先求出x,y的值,再代入式中求值即可.【详解】解:∵,则=故答案为-1【点睛】本题考查了绝对值和算术平方根非负性的应用,能正确把x,y的值求出是解题关键.14、【分析】根据分式的运算法则即可求解.【详解】=故答案为:.【点睛】此题主要考查分式的除法,解题的关键是熟知分式的性质.15、【解析】根据平方根的定义即可求解.【详解】解:11的平方根为.【点睛】本题考查了平方根的定义,解题的关键在于平方根和算术平方根的区别和联系.16、1【解析】设三角形的三边分别为5x,12x,13x,则(5x)2+(12x)2=(13x)2,根据勾股定理的逆定理,这个三角形是直角三角形,则这个三角形中最大的角为1度,故答案为:1.17、【分析】先根据无理数的定义,找出这些数中的无理数,再计算所有无理数的和.【详解】无理数有:,,,∴==故答案为:.【点睛】本题是对无理数知识的考查,熟练掌握无理数的知识和实数计算是解决本题的关键.18、【分析】本题可利用直角三角形斜边中线等于斜边的一半求证边等,并结合直角互余性质求解对应角度解题即可.【详解】∵∠ACB=,CE是AB边上的中线,∴EA=EC=EB,又∵∠B=,∴∠ACE=∠A=,∵,∴∠DCB=.故.故填:.【点睛】本题考查直角三角形性质,考查“斜中半”定理,角度关系则主要通过直角互余性质求解即可.三、解答题(共78分)19、见解析【分析】首先利用平行线的性质可得∠B=∠E,再利用SAS定理判定△ABC≌△CED即可.【详解】解:证明:∵AB∥ED,∴∠B=∠E,在△ABC和△CED中,,∴△ABC≌△CED(SAS).【点睛】本题主要考查了平行线的性质,全等三角形的判定与性质,是一道很简单的全等证明,只需证一次全等,无需添加辅助线,且全等的条件都很明显,关键是熟记全等三角形的判定与性质.20、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【分析】(1)根据已知条件易证∠BAC=∠DAE,再由AB=AD,AE=AC,根据SAS即可证得△ABC≌△ADE;(2)已知∠CAE=90°,AC=AE,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC≌△DAE,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE即可得∠FAE的度数;(3)延长BF到G,使得FG=FB,易证△AFB≌△AFG,根据全等三角形的性质可得AB=AG,∠ABF=∠G,再由△BAC≌△DAE,可得AB=AD,∠CBA=∠EDA,CB=ED,所以AG=AD,∠ABF=∠CDA,即可得∠G=∠CDA,利用AAS证得△CGA≌△CDA,由全等三角形的性质可得CG=CD,所以CG=CB+BF+FG=CB+2BF=DE+2BF.【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,在△CGA和△CDA中,,∴△CGA≌△CDA,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.21、条件是(2)AC=DB,证明见解析【分析】根据三角形全等的条件进行选择判断,先证明,可以得到,从而可以证明出.【详解】解:选择的条件是(2),证明如下:在中,∵,∴∴在中,∵,∴【点睛】本题考查了全等三角形的判定,在全等三角形的5种判定方法中,选用合适的方法进行判定是解题的关键.22、见解析【分析】连接AC、BC、AD、BD,根据SSS证明△ACD≌BCD,从而得到∠ACO=∠BCO、∠ADO=∠BDO,再根据SAS证明△AOC≌BOC,△AOD≌△BOD,从而得到AO=BO,OC⊥AB,OC⊥AB,再得出结论.【详解】连接AC、BC、AD、BD,如图所示:∵分别以点A、点B为圆心,大于AB长的为半径作弧,两弧相交于C、D两点,∴AC=BC,AD=BD,在△ACD和△BCD中,∴△ACD≌△BCD,∴∠ACO=∠BCO、∠ADO=∠BDO,在△AOC和△BOC中,,∴△AOC≌BOC,∴OA=OB,∠COA=∠COB=90º,∴OC垂直平分AB,同理可证△AOD≌△BOD,OC垂直平分AB,∴直线CD是线段AB的垂直平分线.【点睛】考查了全等三角形的判定和性质,解题关键是证明△ACD≌BCD,从而得到∠ACO=∠BCO、∠ADO=∠BDO,再根据SAS证明△AOC≌BOC,再得到OC垂直平分AB.23、(1)见解析;(2)△AMN是等边三角形,见解析;(3)【分析】(1)根据线段垂直平分线的性质得到EA=EB,NA=CA,根据三角形的周长公式证明结论;(2)根据等腰三角形的性质、三角形内角和定理得到∠B=∠C=30°,根据三角形的外角性质、等边三角形的判定定理证明;(3)证明ANM=90°,根据勾股定理求出AN、NC,根据勾股定理列式计算得到答案.【详解】(1)证明:∵EM是AB的垂直平分线,∴EA=EB,同理,NA=CA,∴△AMN的周长=MA+MN+NA=MB+MN+NC=BC;(2)解:△AMN是等边三角形,理由如下:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵EA=EB,∴∠MAB=∠B=30°,∴∠AMN=∠MAB+∠B=60°,同理可得,∠ANM=60°,∴△AMN是等边三角形;(3)解:∵NC=NA,∴∠NAC=∠C=45°,∴∠ANM=∠ANC=90°,设NC=NA=x,由勾股定理得,NA2+NC2=AC2,即x2+x2=(3)2,解得,x=3,即NC=NA,∴MB=MA=6﹣MN,在Rt△AMN中,NA2+MN2=AM2,即32+MN2=(6﹣MN)2,解得,MN=.【点睛】本题考查的是线段垂直平分线的性质、等边三角形的判定和性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.24、(1)证明见解析;(2)证明见解析.【解析】(1)根据直角三角形斜边上的中线等于斜边的一半,得到DB=DC,从而∠B=∠DCB,由DE∥BC,得到∠DCB=∠CDE,由CE=CD,得到∠CDE=∠DEC,利用等量代换,得到∠B=∠DEC;(2)先利用一组对边平行且相等的四边形是平行四边形,证明四边形ADCE是平行四边形,再由CD=CE,证明平行四边形ADCE是菱形.【详解】(1)证明:在△ABC中,∵∠ACB=90°,点D是斜边AB的中点,∴CD=DB,∴∠B=∠DCB,∵DE∥BC,∴∠DCB=∠CDE,∵CD=CE,∴∠CDE=∠CED,∴∠B=∠CED.(2)证明:∵DE∥BC,∴∠ADE=∠B,∵∠B=∠DEC,∴∠ADE=∠DEC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论