版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州余杭区星桥中学2023-2024学年九年级数学第一学期期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列图形中一定是相似形的是()A.两个菱形 B.两个等边三角形 C.两个矩形 D.两个直角三角形2.下列图形中,是中心对称图形的是()A. B. C. D.3.从,,,这四个数字中任取两个,其乘积为偶数的概率是()A. B. C. D.4.已知2x=3y(y≠0),则下面结论成立的是()A. B.C. D.5.如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()A.πcm B.2πcm C.3πcm D.5πcm6.一元二次方程x2﹣6x﹣1=0配方后可变形为()A. B.C. D.7.在平面直角坐标系中,抛物线经过变换后得到抛物线,则这个变换可以是()A.向左平移2个单位 B.向右平移2个单位C.向左平移8个单位 D.向右平移8个单位8.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π9.已知二次函数,当自变量取时,其相应的函数值小于0,则下列结论正确的是()A.取时的函数值小于0B.取时的函数值大于0C.取时的函数值等于0D.取时函数值与0的大小关系不确定10.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2) B.(﹣2,﹣1) C.(1,2) D.(2,1)11.如图,是的直径,弦于点,如果,,那么线段的长为()A.6 B.8 C.10 D.1212.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出______个.14.关于x的方程x2﹣x﹣m=0有两个不相等实根,则m的取值范围是__________.15.如图,菱形的边长为1,,以对角线为一边,在如图所示的一侧作相同形状的菱形,再依次作菱形,菱形,……,则菱形的边长为_______.16.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.17.用一个圆心角为150º,半径为8的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为________.18.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.三、解答题(共78分)19.(8分)解方程(1)2x2﹣7x+3=1;(2)x2﹣3x=1.20.(8分)如图,已知与⊙交于两点,过圆心且与⊙交于两点,平分.(1)求证:∽(2)作交于,若,,求的值.21.(8分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为的条件下生长最快的新品种.下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(°C)随时间x(小时)变化的函数图象,其中段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度的时间有________小时;(2)当时,大棚内的温度约为多少度?22.(10分)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.如图1,∠ABC=∠ADC=90°,四边形ABCD是损矩形,则该损矩形的直径是线段AC.同时我们还发现损矩形中有公共边的两个三角形角的特点:在公共边的同侧的两个角是相等的.如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC.(1)请在图1中再找出一对这样的角来:=.(2)如图2,△ABC中,∠ABC=90°,以AC为一边向外作菱形ACEF,D为菱形ACEF对角线的交点,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.(3)在第(2)题的条件下,若此时AB=6,BD=8,求BC的长.23.(10分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.24.(10分)在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字,,,乙口袋中的小球上分别标有数字,,,从两口袋中分别各摸一个小球.求摸出小球数字之和为的概率25.(12分)二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了名学生,a=%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.26.在平面直角坐标系xOy中,有任意三角形,当这个三角形的一条边上的中线等于这条边的一半时,称这个三角形叫“和谐三角形”,这条边叫“和谐边”,这条中线的长度叫“和谐距离”.(1)已知A(2,0),B(0,4),C(1,2),D(4,1),这个点中,能与点O组成“和谐三角形”的点是,“和谐距离”是;(2)连接BD,点M,N是BD上任意两个动点(点M,N不重合),点E是平面内任意一点,△EMN是以MN为“和谐边”的“和谐三角形”,求点E的横坐标t的取值范围;(3)已知⊙O的半径为2,点P是⊙O上的一动点,点Q是平面内任意一点,△OPQ是“和谐三角形”,且“和谐距离”是2,请描述出点Q所在位置.
参考答案一、选择题(每题4分,共48分)1、B【分析】如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.【详解】解:∵等边三角形的对应角相等,对应边的比相等,∴两个等边三角形一定是相似形,又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B.【点睛】本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.2、D【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点睛】本题考查的知识点是中心对称图形,掌握中心对称图形的定义是解此题的关键.3、C【分析】画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,其中积为偶数的有6种结果,∴积为偶数的概率是,故选:C.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.4、A【解析】试题解析:A、两边都除以2y,得,故A符合题意;B、两边除以不同的整式,故B不符合题意;C、两边都除以2y,得,故C不符合题意;D、两边除以不同的整式,故D不符合题意;故选A.5、C【解析】试题分析:根据定滑轮的性质得到重物上升的即为转过的弧长,利用弧长公式得:l==3πcm,则重物上升了3πcm,故选C.考点:旋转的性质.6、B【分析】根据配方法即可求出答案.【详解】解:∵x2﹣6x﹣1=0,∴x2﹣6x=1,∴(x﹣3)2=10,故选B.【点睛】此题主要考查一元二次方程的配方法,解题的关键是熟知配方法的运用.7、B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】y=(x+5)(x-3)=(x+1)2-16,顶点坐标是(-1,-16).y=(x+3)(x-5)=(x-1)2-16,顶点坐标是(1,-16).所以将抛物线y=(x+5)(x-3)向右平移2个单位长度得到抛物线y=(x+3)(x-5),故选B.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.8、B【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【详解】在实数|-3|,-1,0,π中,|-3|=3,则-1<0<|-3|<π,故最小的数是:-1.故选B.【点睛】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.9、B【分析】画出函数图象,利用图象法解决问题即可;【详解】由题意,函数的图象为:∵抛物线的对称轴x=,设抛物线与x轴交于点A、B,∴AB<1,∵x取m时,其相应的函数值小于0,∴观察图象可知,x=m-1在点A的左侧,x=m-1时,y>0,故选B.【点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.10、A【详解】∵正比例函数y=2x和反比例函数y=的一个交点为(1,2),∴另一个交点与点(1,2)关于原点对称,∴另一个交点是(-1,-2).故选A.11、A【分析】连接OD,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD的长求出DE的长,又由直径的长求出半径OD的长,在直角三角形ODE中,由DE及OD的长,利用勾股定理即可求出OE的长.【详解】解:如图所示,连接OD.
∵弦CD⊥AB,AB为圆O的直径,
∴E为CD的中点,
又∵CD=16,
∴CE=DE=CD=8,
又∵OD=AB=10,
∵CD⊥AB,∴∠OED=90°,
在Rt△ODE中,DE=8,OD=10,
根据勾股定理得:OE==6,
则OE的长度为6,
故选:A.【点睛】本题主要考查了垂径定理,勾股定理,解答此类题常常利用垂径定理由垂直得中点,进而由弦长的一半,弦心距及圆的半径构造直角三角形,利用勾股定理是解答此题的关键.12、D【解析】等量关系为:鸡的只数+兔的只数=35,2×鸡的只数+4×兔的只数=94,把相关数值代入即可得到所求的方程组.【详解】解:∵鸡有2只脚,兔有4只脚,∴可列方程组为:,故选D.【点睛】本题考查了由实际问题抽象出二元一次方程组.如何列出二元一次方程组的关键点在于从题干中找出等量关系.二、填空题(每题4分,共24分)13、4【解析】试题分析:如图,能画4个,分别是:以D为圆心,AB为半径画圆;以C为圆心,CA为半径画圆.两圆相交于两点(DE上下各一个),分别于D、E连接后,可得到两个三角形;以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D、E连接后,可得到两个三角形.因此最多能画出4个考点:作图题.14、m>﹣【分析】根据根的判别式,令△>0,即可计算出m的值.【详解】∵关于x的方程x2﹣x﹣m=0有两个不相等实根,∴△=1﹣4×1×(﹣m)=1+4m>0,解得m>﹣.故答案为﹣.【点睛】本题考查了一元二次方程系数的问题,掌握根的判别式是解题的关键.15、【解析】过点作垂直OA的延长线与点,根据“直角三角形30°所对的直角边等于斜边的一半”求出,同样的方法求出和的长度,总结规律即可得出答案.【详解】过点作垂直OA的延长线与点根据题意可得,,则,∴在RT△中,又为菱形的对角线∴,故菱形的边长为;过点作垂直的延长线与点则,∴,∴在RT△中,又为菱形的对角线∴,故菱形的边长为;过点作垂直的延长线与点则,∴,∴在RT△中,又为菱形的对角线∴,故菱形的边长为;……∴菱形的边长为;故答案为.【点睛】本题考查的是菱形,难度较高,需要熟练掌握“在直角三角形中,30°的角所对的直角边等于斜边的一半”这一基本性质.16、红【解析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.17、【分析】根据扇形条件计算出扇形弧长,由此得到其所围成的圆锥的底面圆周长,由圆的周长公式计算底面圆的半径.【详解】∵圆心角为150º,半径为8∴扇形弧长:∴其围成的圆锥的底面圆周长为:∴设底面圆半径为则,得故答案为:.【点睛】本题考查了扇形弧长的计算,及扇形与圆锥之间的对应关系,熟知以上内容是解题的关键.18、40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°三、解答题(共78分)19、(1)x1=2,x2;(2)x1=1或x2=2.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)提取公因式x后,求出方程的解即可;【详解】解:(1)2x2﹣7x+2=1,(x﹣2)(2x﹣1)=1,∴x﹣2=1或2x﹣1=1,∴x1=2,x2;(2)x2﹣2x=1,x(x﹣2)=1,x1=1或,x2=2.【点睛】本题主要考查了解一元二次方程,掌握解一元二次方程是解题的关键.20、(1)见解析;(2)【分析】(1)由题意可得∠BOE=∠AOC=∠D,且∠A=∠A,即可证△ACD∽△ABO;(2)由切线的性质和勾股定理可求CD的长,由相似三角形的性质可求AE=,由平行线分线段成比例可得,即可求EF的值.【详解】证明:(1)∵平分∴又∵所对圆心角是,所对的圆周角是∴∴又∵∴∽(2)∵,∴∵,∴∵,∴∵∽∴∴,∴,∵,∴∽∴∴∴【点睛】本题考查了相似三角形的判定和性质,圆的有关知识,勾股定理,求出AE的长是本题的关键.21、(1)8;(2).【分析】找出临界点即可.【详解】(1)8;∵点在双曲线上,
∴,
∴解得:.
当时,,
所以当时,大棚内的温度约为.【点睛】理解临界点的含义是解题的关键.22、(1)∠ABD=∠ACD(或∠DAC=∠DBC);(2)四边形ACEF为正方形,理由见解析;(3)1【分析】(1)根据题意给出的性质即可得出一组角相等;(2)先证明四边形ACEF为菱形,再证明四边形ABCD为损矩形,根据损矩形的性质即可求出四边形ACEF是正方形;(3)过点D作DM⊥BC,过点E作EN⊥BC交BC的延长线于点N,可得△BDM为等腰直角三角形,从而得出△ABC≌△CNE根据性质即可得出BC的长.【详解】(1)由图1得:△ABD和△ADC有公共边AD,在AD同侧有∠ABD和∠ACD,此时∠ABD=∠ACD;故答案为:∠ABD=∠ACD(或∠DAC=∠DBC);(2)四边形ACEF为正方形证明:∵∠ABC=90°,BD平分∠ABC,∴∠ABD=∠CBD=45°,∵四边形ACEF为菱形,∴AE⊥CF,即∠ADC=90°,∵∠ABC=90°,∴四边形ABCD为损矩形,由(1)得∠ACD=∠ABD=45°,∴∠ACE=2∠ACD=90°,∴四边形ACEF为正方形.(3)过点D作DM⊥BC,过点E作EN⊥BC交BC的延长线于点N,∵∠DBM=45°,∴△BDM为等腰直角三角形,∴BM=DM=,∵AC=EC,∠ACE=90°,∠ABC=CNE=90°,∴∠ACB=∠CEN,∴△ABC≌△CNE(AAS),∴CN=AB=6,∵DM∥EN,AD=DE,∴BM=MN=8,∴BC=BN﹣CN=2BM﹣CN=1.【点睛】本题考查新定义下的图形计算,主要运用到矩形菱形正方形的性质,三角形全等的判定和性质,关键在于熟练掌握基础知识,合理利用辅助线得出条件计算.23、(1)60;(2)四边形ACFD是菱形.理由见解析.【分析】(1)利用旋转的性质得出AC=CD,进而得出△ADC是等边三角形,即可得出∠ACD的度数;(2)利用直角三角形的性质得出FC=DF,进而得出AD=AC=FC=DF,即可得出答案.【详解】解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,∴AC=DC,∠A=60°,∠DCE=∠ACB=90°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;(2)四边形ACFD是菱形;理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD是菱形.24、【分析】画树状图展示所有等可能的结果,再根据概率公式求解.【详解】解:利用树状图表示为:由树状图可知,共有种情况,每种情况的可能性相等.摸出的两个小球数字之和为有种情况.(数字之和为).【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度网络科技产品销售代理合同范本
- 2025-2030年中国预拌粉行业市场运行状况及投资发展前景预测报告
- 2025-2030年中国通信继电器行业市场未来发展趋势及前景调研分析报告
- 2025-2030年中国辅酶Q10行业发展现状规划研究报告
- 2025-2030年中国超级铁精粉产业未来发展趋势及前景调研分析报告
- 2025年度:政府与科研机构合作科技成果转化行政合同3篇
- 2025年挖机工程劳务派遣与现场管理合同3篇
- 2025年房地产项目咨询管理合同2篇
- 保险行业推广方案分享
- 2025年度绿色智慧园区商品混凝土供应合同2篇
- 创新者的逆袭3:新质生产力的十八堂案例课-记录
- 2024年河南省公务员考试《行测》真题及答案解析
- 2022-2024北京初三二模英语汇编:话题作文
- 《阻燃材料与技术》-颜龙 习题解答
- 人教版八年级英语上册Unit1-10完形填空阅读理解专项训练
- 2024年湖北省武汉市中考英语真题(含解析)
- GB/T 44561-2024石油天然气工业常规陆上接收站液化天然气装卸臂的设计与测试
- 《城市绿地设计规范》2016-20210810154931
- 网球场经营方案
- 2024年公司保密工作制度(四篇)
- 重庆市康德卷2025届高一数学第一学期期末联考试题含解析
评论
0/150
提交评论