浙江省湖州市高中联盟2023年高一数学第一学期期末统考模拟试题含解析_第1页
浙江省湖州市高中联盟2023年高一数学第一学期期末统考模拟试题含解析_第2页
浙江省湖州市高中联盟2023年高一数学第一学期期末统考模拟试题含解析_第3页
浙江省湖州市高中联盟2023年高一数学第一学期期末统考模拟试题含解析_第4页
浙江省湖州市高中联盟2023年高一数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省湖州市高中联盟2023年高一数学第一学期期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.命题A:命题B:(x+2)·(x+a)<0;若A是B的充分不必要条件,则a的取值范围是A.(-∞,-4) B.[4,+∞)C.(4,+∞) D.(-∞,-4]2.已知函数,则下列是函数图象的对称中心的坐标的是()A. B.C. D.3.下列区间包含函数零点的为()A. B.C. D.4.函数的图象可由函数的图像()A.向左平移个单位得到 B.向右平移个单位得到C.向左平移个单位得到 D.向右平移个单位得到5.已知函数,若,则函数的单调递减区间是A. B.C. D.6.若集合,则()A.或 B.或C.或 D.或7.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过x的最大整数,则称为高斯函数例如:,,已知函数,则函数的值域为()A. B.C.1, D.1,2,8.已知是空间两条不重合的直线,是两个不重合的平面,则下列命题中正确的是A.,,B,,C.,,D.,,9.已知幂函数的图像过点,若,则实数的值为A. B.C. D.10.中国高速铁路技术世界领先,高速列车运行时不仅速度比普通列车快而且噪声更小.我们用声强I(单位:W/m2)表示声音在传播途径中每1平方米面积上声能流密度,声强级L1(单位:dB)与声强I的函数关系式为:.若普通列车的声强级是95dB,高速列车的声强级是45dB,则普通列车的声强是高速列车声强的()A.倍 B.倍C.倍 D.倍二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.设偶函数的定义域为,函数在上为单调函数,则满足的所有的取值集合为______12.计算:__________,__________13.在平面直角坐标系xOy中,已知圆有且仅有三个点到直线l:的距离为1,则实数c的取值集合是______14.已知函数定义域为,若满足①在内是单调函数;存在使在上的值域为,那么就称为“半保值函数”,若函数且是“半保值函数”,则的取值范围为________15.若且,则取值范围是___________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.函数的定义域,且满足对于任意,有(1)求的值(2)判断的奇偶性,并证明(3)如果,且在上是增函数,求的取值范围17.已知集合:①;②;③,集合(m为常数),从①②③这三个条件中任选一个作为集合A,求解下列问题:(1)定义,当时,求;(2)设命题p:,命题q:,若p是q成立的必要不充分条件,求实数m的取值范围18.近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以天计),每件的销售价格(单位:元)与时间(单位:天)的函数关系近似满足(为常数,且),日销售量(单位:件)与时间(单位:天)的部分数据如下表所示:已知第天的日销售收入为元(1)求的值;(2)给出以下四个函数模型:①;②;③;④请你根据上表中数据,从中选择你认为最合适的一种函数模型来描述日销售量与时间的变化关系,并求出该函数的解析式;(3)设该工艺品的日销售收入为(单位:元),求的最小值19.已知函数的图象过点,且相邻的两个零点之差的绝对值为6(1)求的解析式;(2)将的图象向右平移3个单位后得到函数的图象若关于x的方程在上有解,求实数a的取值范围.20.已知函数,在一个周期内的图象如下图所示.(1)求函数的解析式;(2)设,且方程有两个不同的实数根,求实数m的取值范围和这两个根的和.21.已知函数是定义在R上的奇函数(1)用定义法证明为增函数;(2)对任意,都有恒成立,求实数k的取值范围

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】记根据题意知,所以故选A2、A【解析】根据三角函数性质计算对称中心【详解】令,则,故图象的对称中心为故选:A3、C【解析】根据零点存在定理,分别判断选项区间的端点值的正负可得答案.【详解】,,,,,又为上单调递增连续函数故选:C.4、D【解析】异名函数图像的平移先化同名,然后再根据“左加右减,上加下减”法则进行平移.【详解】变换到,需要向右平移个单位.故选:D【点睛】函数图像平移异名化同名的公式:,.5、D【解析】由判断取值范围,再由复合函数单调性的原则求得函数的单调递减区间【详解】,所以,则为单调增函数,又因为在上单调递减,在上单调递增,所以的单调减区间为,选择D【点睛】复合函数的单调性判断遵循“同增异减”的原则,所以需先判断构成复合函数的两个函数的单调性,再判断原函数的单调性6、B【解析】根据补集的定义,即可求得的补集.【详解】∵,∴或,故选:B【点睛】本小题主要考查补集的概念和运算,属于基础题.7、C【解析】由分式函数值域的求法得:,又,所以,由高斯函数定义的理解得:函数的值域为,得解【详解】解:因为,所以,又,所以,由高斯函数的定义可得:函数的值域为,故选C【点睛】本题考查了分式函数值域的求法及对新定义的理解,属中档题8、D【解析】A不正确,也有可能;B不正确,也有可能;C不正确,可能或或;D正确,,,,考点:1线面位置关系;2线面垂直9、D【解析】将点代入函数解析式,求出参数值,令函数值等于3,可求出自变量的值.详解】依题意有2=4a,得a=,所以,当时,m=9.【点睛】本题考查函数解析式以及由函数值求自变量,一般由函数值求自变量的值时要注意自变量取值范围以及题干的要求,避免多解.10、B【解析】根据函数模型,列出关系式,进而结合对数的运算性质,可求出答案.【详解】普通列车的声强为,高速列车声强为,解:设由题意,则,即,所以,即普通列车的声强是高速列车声强的倍.故选:B.【点睛】本题考查函数模型、对数的运算,属于基础题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】∵,又函数在上为单调函数∴=∴,或∴∴满足的所有的取值集合为故答案为12、①.0②.-2【解析】答案:0,13、【解析】因为圆心到直线的距离为,所以由题意得考点:点到直线距离14、【解析】根据半保值函数的定义,将问题转化为与的图象有两个不同的交点,即有两个不同的根,换元后转化为二次方程的实根的分布可解得.【详解】因为函数且是“半保值函数”,且定义域为,由时,在上单调递增,在单调递增,可得为上的增函数;同样当时,仍为上的增函数,在其定义域内为增函数,因为函数且是“半保值函数”,所以与的图象有两个不同的交点,所以有两个不同的根,即有两个不同的根,即有两个不同的根,可令,,即有有两个不同正数根,可得,且,解得.【点睛】本题考查函数的值域的求法,解题的关键是正确理解“半保值函数”,解题时要认真审题,仔细解答,注意合理地进行等价转化15、或【解析】分类讨论解对数不等式即可.【详解】因为,所以,当时,可得,当时,可得.所以或故答案为:或三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)0;(2)偶函数;(3)见解析【解析】(1)令,代入,即可求出结果;(2)先求出,再由,即可判断出结果;(3)先由,求出,将不等式化为,根据函数在上是增函数,分和两种情况讨论,即可得出结果.【详解】(1)因为对于任意,有,令,则,所以;(2)令,则,所以,令,则,所以函数为偶函数;(3)因为,所以,所以不等式可化为;又因为在上是增函数,而函数为偶函数,所以或;当时,或;当时,或;综上,当时,的取值范围为或;当时,的取值范围为或.【点睛】本题主要考查函数奇偶性与单调性的综合,以及抽象函数及其应用,常用赋值法求函数值,属于常考题型.17、(1);(2)【解析】(1)求出集合的范围,取交集即可(2)求出集合的范围,根据p是q成立的必要不充分条件,得到,从而求出参数的取值范围【小问1详解】选①:,若,即时,即,解得,若,则,无解,所以的解集为,故,由,可得,即,解得,故,则选②:,解得,故,,,即,解得,故,则选③:,,解得,故,,,即,解得,故,则【小问2详解】由,即,解得,因为p是q成立的必要不充分条件,所以,所以或,解得,故m的取值范围为18、(1);(2);(3).【解析】(1)根据第10天的日销售收入,得到,即可求解;(2)由数据知先增后减,选择②,由对称性求得实数的值,再利用进而列出方程组,求得的值,从而求得函数的解析式;(3)根据(2)求得的解析式,然后利用基本不等式和函数的单调性分别求得各段的最小值,比较得到结论.【详解】(1)因为第10天的日销售收入为505元,所以,即,解得.(2)由表格中的数据知,当时间变换时,先增后减,函数模型:①;③;④都是单调函数,所以选择模型②:,由,可得,解得,由,解得,所以日销售量与时间的变化的关系式为.(3)由(2)知,所以,即,当时,由基本不等式,可得,当且仅当时,即时等号成立,当时,为减函数,所以函数的最小值为,综上可得,当时,函数取得最小值【点睛】求解所给函数模型解决实际问题的关注点:1、认清所给函数模型,弄清哪些量为待定系数;2、根据已知利用待定系数法,列出方程,确定函数模型中的待定系数;3、结合函数的基本形式,利用函数模型求解实际问题,19、(1)(2)【解析】(1)结合正弦函数性质,相邻两个零点之差为函数的半个周期,由此得,代入已知点坐标可求得,得解析式;(2)由图象变换得,求出时的的值域,由属于这个值域可得的范围【详解】(1)设的最小正周期为T,因为相邻的两个零点之差的绝对值为6,所以,所以.因为的图象经过点,所以,又因为,所以.所以.(2)由(1)可得.当时,,则.因为关于x的方程在上有解,所以,解得或.所以a的取值范围为.【点睛】本题考查三角函数的图象与性质,由图象求解析式,可结合“五点法”中的五点求解.方程有解问题可由分离参数法转化为求函数值域问题.20、(1),(2)或;当时,两根之和;当)时,两根之和.【解析】(1)观察图象可得:,根据求出,再根据可得.可得解;(2)如图所示,.作出直线.方程有两个不同的实数根转化为:函数.与函数图象交点的个数.利用图象的对称性质即可得出【详解】(1)观察图象可得:,因为f(0)=1,所以.因为,由图象结合五点法可知,对应于函数y=sinx的点,所以(2)如图所示,作出直线方程有两个不同的实数根转化为:函数与函数图象交点的个数可知:当时,此时两个函数图象有两个交点,关于直线对称,两根和为当时,此时两个函数图象有两个交点,关于直线对称,两根和为【点睛】本题考查了三角函数的图象与性质、方程思想、数形结合方法,考查了推理能力与计算能力,属于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论