




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省乐清市知临中学2023年高一数学第一学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个球的内接正方体的表面积为54,则球的表面积为()A. B.C. D.2.若定义在上的奇函数在单调递减,且,则的解集是()A. B.C. D.3.《九章算术》中,称底面为矩形且有一侧棱垂直于底面的四棱锥为阳马,如图,某阳马的三视图如图所示,则该阳马的最长棱的长度为()A. B.C.2 D.4.已知命题p:,,则为()A., B.,C., D.,5.是所在平面上的一点,满足,若,则的面积为()A.2 B.3C.4 D.86.已知向量,,且,若,均为正数,则的最大值是A. B.C. D.7.关于的不等式恰有2个整数解,则实数的取值范围是()A. B.C. D.8.已知扇形的半径为,面积为,则这个扇形的圆心角的弧度数为()A. B.C. D.9.若函数,,则函数的图像经过怎样的变换可以得到函数的图像①先向左平移个单位,再将横坐标缩短到原来的倍,纵坐标保持不变.②先向左平移个单位,再将横坐标缩短到原来的倍,纵坐标保持不变.③将横坐标缩短到原来的倍,再向左平移个单位,纵坐标保持不变.④将横坐标缩短到原来的倍,再向左平移个单位,纵坐标保持不变.A.①③ B.①④C.②③ D.②④10.已知幂函数的图象过点(2,),则的值为()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的部分图象如图所示,则函数的解析式为________.12.已知空间中两个点A(1,3,1),B(5,7,5),则|AB|=_____13.已知函数的图上存在一点,函数的图象上存在一点,恰好使两点关于直线对称,则满足上述要求的实数的取值范围是___________14.已知点为圆上的动点,则的最小值为__________15.已知,是方程的两根,则__________16.如果二次函数在区间上是增函数,则实数的取值范围为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知对数函数f(x)=logax(a>0,且a≠1)的图象经过点(4,2)(1)求实数a的值;(2)如果f(x+1)<0,求实数x的取值范围18.在①是函数图象的一条对称轴,②函数的最大值为2,③函数图象与y轴交点的纵坐标是1这三个条件中选取两个补充在下面题目中,并解答已知函数,______(1)求的解析式;(2)求在上的值域19.已知向量,.(1)若与共线且方向相反,求向量的坐标.(2)若与垂直,求向量,夹角的大小.20.对于定义在上的函数,如果存在实数,使得,那么称是函数的一个不动点.已知(1)当时,求的不动点;(2)若函数有两个不动点,,且①求实数的取值范围;②设,求证在上至少有两个不动点21.某渔业公司年初用98万元购进一艘渔船,用于捕捞.已知该船使用中所需的各种费用e(单位:万元)与使用时间n(,单位:年)之间的函数关系式为,该船每年捕捞的总收入为50万元(1)该渔船捕捞几年开始盈利(即总收入减去成本及所有使用费用为正值)?(2)若当年平均盈利额达到最大值时,渔船以30万元卖出,则该船为渔业公司带来的收益是多少万元?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】球的内接正方体的对角线就是球的直径,正方体的棱长为a,球的半径为r,则,求出正方体棱长,再求球半径即可【详解】解:设正方体的棱长为a,球的半径为r,则,所以又因所以所以故选:A【点睛】考查球内接正方体棱长和球半径的关系以及球表面积的求法,基础题.2、C【解析】分析函数的单调性,可得出,分、两种情况解不等式,综合可得出原不等式的解集.【详解】因为定义在上的奇函数在单调递减,则函数在上为减函数.且,当时,由可得,则;当时,由可得,则.综上所述,不等式的解集为.故选:C.3、B【解析】根据三视图画出原图,从而计算出最长的棱长.【详解】由三视图可知,该几何体如下图所示,平面,,则所以最长的棱长为.故选:B4、C【解析】全称命题的否定定义可得.【详解】根据全称命题的否定,:,.故选:C.5、A【解析】∵,∴,∴,且方向相同∴,∴.选A6、C【解析】利用向量共线定理可得2x+3y=5,再利用基本不等式即可得出【详解】∵,∴(3y-5)×1+2x=0,即2x+3y=5.∵x>0,y>0,∴5=2x+3y≥2,∴xy≤,当且仅当3y=2x时取等号故选C.点睛】本题考查了向量共线定理和基本不等式,属于中档题7、B【解析】由已知及一元二次不等式的性质可得,讨论a结合原不等式整数解的个数求的范围,【详解】由恰有2个整数解,即恰有2个整数解,所以,解得或,①当时,不等式解集为,因为,故2个整数解为1和2,则,即,解得;②当时,不等式解集为,因为,故2个整数解为,则,即,解得.综上所述,实数的取值范围为或.故选:B.8、A【解析】由扇形的面积公式即可求解.【详解】解:设扇形圆心角的弧度数为,则扇形面积为,解得,因为,所以扇形的圆心角的弧度数为4.故选:A9、A【解析】依次判断四种变换方式的结果是否符合题意,选出正确变换【详解】函数,先向左平移个单位,再将横坐标缩短到原来的倍,函数变为,所以①合题意;先向左平移个单位,再将横坐标缩短到原来的倍,函数变为,所以②不合题意;将横坐标缩短到原来的倍,再向左平移个单位,函数变为,所以③合题意;将横坐标缩短到原来的倍,再向左平移个单位,函数变为,所以④不合题意,故选择A【点睛】在进行伸缩变换时,横坐标变为原来的倍;向左或向右进行平移变换注意平移单位要加或减在“”上10、A【解析】令幂函数且过(2,),即有,进而可求的值【详解】令,由图象过(2,)∴,可得故∴故选:A【点睛】本题考查了幂函数,由幂函数的形式及其所过的定点求解析式,进而求出对应函数值,属于简单题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据三角函数的图象,求出函数的周期,进而求出和即可得到结论【详解】由图象得,,则周期,则,则,当时,,则,即即,即,,,当时,,则函数的解析式为,故答案为【点睛】本题主要考查三角函数解析式的求解,根据三角函数图象求出,和的值是解决本题的关键12、【解析】直接代入空间中两点间的距离公式即可得解.【详解】∵空间中两个点A(1,3,1),B(5,7,5),∴|AB|4故答案为:4【点睛】本题考查空间中两点间的距离公式,属于基础题.13、【解析】函数g(x)=lnx的反函数为,若函数f(x)的图象上存在一点P,函数g(x)=lnx的图象上存在一点Q,恰好使P、Q两点关于直线y=x对称,则函数g(x)=lnx的反函数图象与f(x)图象有交点,即在x∈R上有解,,∵x∈R,∴∴即.三、14、-4【解析】点为圆上的动点,所以.由,所以当时有最小值-4.故答案为-4.15、##【解析】将所求式利用两角和的正弦与两角差的余弦公式展开,然后根据商数关系弦化切,最后结合韦达定理即可求解.【详解】解:因为,是方程的两根,所以,所以,故答案为:.16、【解析】函数对称轴为,则由题意可得,解出不等式即可.【详解】∵函数的对称轴为且在区间上是增函数,∴,即.【点睛】已知函数在某个区间上的单调性,则这个区间是这个函数对应单调区间的子集.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)a=2.(2){x|﹣1<x<0}【解析】(1)将点(4,2)代入函数计算得到答案.(2)解不等式log2(x+1)<log21得到答案【详解】(1)因为loga4=2,所以a2=4,因为a>0,所以a=2(2)因为f(x+1)<0,也就是log2(x+1)<0,所以log2(x+1)<log21,所以,即﹣1<x<0,所以实数x的取值范围是{x|﹣1<x<0}【点睛】本题考查了对数函数解析式,解不等式,忽略定义域是容易发生的错误.18、(1)条件选择见解析,;(2).【解析】(1)选择①②直接求出A及的解;选择①③,先求出,再由求A作答;选择②③,直接可得A,再由求作答.(2)由(1)结合正弦函数的性质即可求得在上的值域.【小问1详解】选择①②,,由及得:,所以的解析式是:.选择①③,由及得:,即,而,则,即,解得,所以的解析式是:.选择②③,,而,即,又,则有,所以的解析式是:.【小问2详解】由(1)知,,当时,,则当,即时,,当,即时,,所以函数在上的值域是.19、(1);(2).【解析】(1)由已知设,.再由向量的模的表示可求得答案;(2)根据向量垂直的坐标表示可求得,再由向量的夹角运算求得答案..,.【详解】(1),且与共线且方向相反.设,.,,..(2)与垂直,,,,.,.20、(1)的不动点为和;(2)①,②证明见解析.【解析】(1)当时,函数,令,即可求解;(2)①由题意,得到的两个实数根为,,设,根据二次函数的图象与性质,列出不等式即可求解;②把可化为,设的两个实数根为,,根据是方程的实数根,得出,结合函数单调性,即可求解.【详解】(1)当时,函数,方程可化为,解得或,所以的不动点为和(2)①因为函数有两个不动点,,所以方程,即的两个实数根为,,记,则的零点为和,因为,所以,即,解得.所以实数的取值范围为②因为方程可化为,即因为,,所以有两个不相等的实数根设的两个实数根为,,不妨设因为函数图象的对称轴为直线,且,,,所以记,因为,且,所以是方程的实数根,所以1是的一个不动点,,因为,所以,,且的图象在上的图象是不间断曲线,所以,使得,又因为在上单调递增,所以,所以是的一个不动点,综上,在上至少有两个不动点【点睛】利用函数的图象求解方程的根的个数或研究不等式问题的策略:1、利用函数的图象研究方程的根的个数:当方程与基本性质有关时,可以通过函数图象来研究方程的根,方程的根就是函数与轴的交点的横坐标,方程的根据就是函数和图象的交点的横坐标;2、利用函数研究不等式:当不等式问题不能用代
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陶瓷设计与生活环境关系考核试卷
- 质量管理与绩效改进出版考核试卷
- 运载火箭飞行轨迹与再入技术试题考核试卷
- 电气设备电力系统负荷特性分析考核试卷
- 钾肥生产工艺优化与节能考核试卷
- 通信产品批发商创新能力评估考核试卷
- 谊安510呼吸机操作与临床应用
- 麻醉专科护士工作汇报与专业发展
- 口腔修复学绪论
- 新生儿脐动静脉置管术
- 七年级下册地理知识点总结(考点清单)(背记版)七年级地理下学期期末复习(人教2024版)
- 2025年四川富润招聘笔试冲刺题(带答案解析)
- 公司物流内部管理制度
- 2025年全国安全生产月活动安全知识竞赛题库(附答案)
- 2025医疗健康行业AI应用白皮书-阿里云
- 高温环境电缆散热措施
- 2025年数学中考专题复习课件:7.30 尺规作图
- 公交站牌制作合同协议书
- 人教部编版五年级下册语文期末复习现代文阅读(含课内、课外)专项训练(三)(含答案)
- 湖南省岳阳市湘阴县长仑四校2024-2025学年下学期 5月联考八年级数学试题
- 2025届重庆市渝北八中学数学八下期末学业水平测试模拟试题含解析
评论
0/150
提交评论