浙江省绍兴上虞区四校联考2023-2024学年数学八上期末学业水平测试模拟试题含解析_第1页
浙江省绍兴上虞区四校联考2023-2024学年数学八上期末学业水平测试模拟试题含解析_第2页
浙江省绍兴上虞区四校联考2023-2024学年数学八上期末学业水平测试模拟试题含解析_第3页
浙江省绍兴上虞区四校联考2023-2024学年数学八上期末学业水平测试模拟试题含解析_第4页
浙江省绍兴上虞区四校联考2023-2024学年数学八上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省绍兴上虞区四校联考2023-2024学年数学八上期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若点,在直线上,且,则该直线经过象限是()A.一、二、三 B.一、二、四 C.二、三、四 D.一、三、四2.的相反数是()A.9 B.-9 C. D.3.如图,在等边中,是边上一点,连接,将绕点逆时针旋转得到,连接,若,,则有以下四个结论:①是等边三角形;②;③的周长是10;④.其中正确结论的序号是()A.②③④ B.①③④ C.①②④ D.①②③4.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=3,则点P到边OA的距离是()A.1 B.2 C.3 D.45.两个三角形只有以下元素对应相等,不能判定两个三角形全等的()A.两角和一边 B.两边及夹角 C.三个角 D.三条边6.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A. B.C. D.7.下列运算正确的是()A.x3+x3=2x6 B.x2·x4=x8C.(x2)3=x6 D.2x-2=8.在Rt△ABC中,∠C=90°,AB=13,AC=12,则△ABC的面积为()A.5 B.60 C.45 D.309.如图,AF∥CD,BC平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠BCD+∠D=90°;④∠DBF=2∠ABC.其中正确的个数为()A.1个 B.2个 C.3个 D.4个10.现实世界中,对称现象无处不在,中国的黑体字中有些也具有对称性,下列黑体字是轴对称图形的是()A.诚 B.信 C.自 D.由11.如图,在△ABC中,AB=AC,AD、CE分别是△ABC的中线和角平分线,当∠ACE=35°时,∠BAD的度数是()A.55° B.40° C.35° D.20°12.点M(﹣2,1)关于y轴的对称点N的坐标是()A.(﹣2,﹣1)B.(2,1)C.(2,﹣1)D.(1,﹣2)二、填空题(每题4分,共24分)13.已知a,b满足方程组,则a—2b的值为__________.14.点和关于轴对称,则_____.15.的相反数是__________.16.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形.图中,____度.17.若a+b=3,则代数式(-a)÷=_____________.18.将一副三角尺如图所示叠放在一起,若AB=4cm,则阴影部分的面积是_____cm1.三、解答题(共78分)19.(8分)解下列分式方程.(1)(2)20.(8分)如图1,已知,,且,.(1)求证:;(2)如图2,若,,折叠纸片,使点与点重合,折痕为,且.①求证:;②点是线段上一点,连接,一动点从点出发,沿线段以每秒1个单位的速度运动到点,再沿线段以每秒个单位的速度运动到后停止,点在整个运动过程中用时最少多少秒?21.(8分)如图,在ABC中,AB=13,BC=14,AC=15.求BC边上的高.22.(10分)如图,在平面直角坐标系中,,,且,满足,直线经过点和.(1)点的坐标为(,),点的坐标为(,);(2)如图1,已知直线经过点和轴上一点,,点在直线AB上且位于轴右侧图象上一点,连接,且.①求点坐标;②将沿直线AM平移得到,平移后的点与点重合,为上的一动点,当的值最小时,请求出最小值及此时N点的坐标;(3)如图2,将点向左平移2个单位到点,直线经过点和,点是点关于轴的对称点,直线经过点和点,动点从原点出发沿着轴正方向运动,连接,过点作直线的垂线交轴于点,在直线上是否存在点,使得是等腰直角三角形?若存在,求出点坐标.23.(10分)如图,在ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分线,DE交BC于点D,交AB于点E,求AE的长.24.(10分)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.25.(12分)已知,求代数式的值.26.先化简,再从中选一个合适的数作为的值代入求值.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据两个点的横坐标、纵坐标的大小关系,得出y随x的增大而减小,进而得出k的取值范围,再根据k、b的符号,确定图象所过的象限即可.【详解】解:∵a<a+1,且y1>y2,

∴y随x的增大而减小,

因此k<0,

当k<0,b=2>0时,一次函数的图象过一、二、四象限,

故选:B.【点睛】本题考查一次函数的图象和性质,掌握一次函数的增减性是正确解答的前提.2、B【分析】先根据负指数幂的运算法则求出的值,然后再根据相反数的定义进行求解即可.【详解】=9,9的相反数为-9,故的相反数是-9,故选B.【点睛】本题考查了负整数指数幂、求一个数的相反数,熟练掌握负整数指数幂的运算法则是解题的关键.3、D【分析】先由△BCD绕点B逆时针旋转60°,得到△BAE,可知:BD=BE,∠DBE=60°,则可判断△BDE是等边三角形;根据等边三角形的性质得BA=BC,∠ABC=∠C=∠BAC=60°,再根据旋转的性质得到∠BAE=∠BCD=60°,从而得∠BAE=∠ABC=60°,根据平行线的判定方法即可得到AE∥BC;根据等边三角形的性质得∠BDE=60°,而∠BDC>60°,则可判断∠ADE≠∠BDC;由△BDE是等边三角形得到DE=BD=4,再利用△BCD绕点B逆时针旋转60°,得到△BAE,则AE=CD,△AED的周长=AE+AD+DE=CD+AD+DE=AC+BD=BC+BD=1.【详解】∵△BCD绕点B逆时针旋转60°,得到△BAE,∴BD=BE,∠DBE=60°,∴△BDE是等边三角形,∴①正确;∵△ABC为等边三角形,∴BA=BC,∠ABC=∠C=∠BAC=60°,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴∠BAE=∠BCD=60°,∴∠BAE=∠ABC,∴AE∥BC,∴②正确;∵△BDE是等边三角形,∴DE=BD=4,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴AE=CD,∴△AED的周长=AE+AD+DE=CD+AD+DE=AC+BD=BC+BD=6+4=1,∴③正确;∵△BDE是等边三角形,∴∠BDE=60°,∵∠BDC=∠BAC+∠ABD>60°,∴∠ADE=180°-∠BDE-∠BDC<60°,∴∠ADE≠∠BDC,∴④错误.故选D.【点睛】本题主要考查旋转得性质,等边三角形的判定和性质定理,掌握旋转的性质以及等边三角形的性质定理,是解题的关键.4、C【分析】作PE⊥OA于E,根据角平分线的性质解答.【详解】解:作PE⊥OA于E,

∵点P是∠AOB平分线OC上一点,PD⊥OB,PE⊥OA,

∴PE=PD=3,

故选:C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.5、C【解析】判定两三角形全等,就必须有边的参与,因此C选项是错误的.A选项,运用的是全等三角形判定定理中的AAS或ASA,因此结论正确;B选项,运用的是全等三角形判定定理中的SAS,因此结论正确;D选项,运用的是全等三角形判定定理中的SSS,因此结论正确;故选C.6、D【详解】试题分析:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时最高水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选D.考点:函数的图象.7、C【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方运算法则和负整数指数幂的运算法则计算各项即得答案.【详解】解:A、x3+x3=2x3≠2x6,所以本选项运算错误;B、,所以本选项运算错误;C、(x2)3=x6,所以本选项运算正确;D、2x-2=,所以本选项运算错误.故选:C.【点睛】本题考查的是合并同类项、同底数幂的乘法、幂的乘方和负整数指数幂等运算法则,属于基础题型,熟练掌握基本知识是解题关键.8、D【分析】在Rt△ABC中,根据勾股定理可求得BC的长,然后根据三角形的面积公式即可得出结论.【详解】解:∵AB=13,AC=12,∠C=90°,∴BC==5,∴△ABC的面积=×12×5=30,故选:D.【点睛】本题考查了勾股定理以及三角形的面积,掌握基本性质是解题的关键.9、C【解析】分析:根据平行线的性质、角平分线的定义、余角的定义作答.详解:①∵BC⊥BD,∴∠DBE+∠CBE=90°,∠ABC+∠DBF=90°,又∵BD平分∠EBF,∴∠DBE=∠DBF,∴∠ABC=∠CBE,即BC平分∠ABE,正确;②由AB∥CE,BC平分∠ABE、∠ACE易证∠ACB=∠CBE,∴AC∥BE正确;③∵BC⊥AD,∴∠BCD+∠D=90°正确;④无法证明∠DBF=60°,故错误.故选C.点睛:此题难度中等,需灵活应用平行线的性质、角平分线的定义、余角的定义等知识点.10、D【分析】根据轴对称图形的概念求解即可.【详解】解:根据轴对称图形的概念可知“由”是轴对称图形,故选:D.【点睛】本题考查轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.11、D【分析】根据角平分线的定义和等腰三角形的性质即可得到结论.【详解】∵CE是∠ACB的平分线,∠ACE=35°,∴∠ACB=2∠ACE=70°,∵AB=AC,∴∠B=∠ACB=70°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,故选D.【点睛】本题考查了等腰三角形的两个底角相等的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.12、B【解析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M(-2,1)关于y轴的对称点N的坐标是(2,1).故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.二、填空题(每题4分,共24分)13、【分析】先根据二元一次方程组解出,b的值,再代入求解即可.【详解】解得将代入a—2b中故答案为:.【点睛】本题考查了解二元一次方程组的问题,掌握解二元一次方程组的方法是解题的关键.14、【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”计算即可.【详解】∵点和关于轴对称,

∴,,

解得:,,则.

故答案为:.【点睛】本题主要考查了关于x轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:①关于x轴对称的点,横坐标相同,纵坐标互为相反数;②关于y轴对称的点,纵坐标相同,横坐标互为相反数;③关于原点对称的点,横坐标与纵坐标都互为相反数15、-【分析】只有符号不同的两个数,我们称这两个数互为相反数.【详解】解:的相反数为-.故答案为:-.【点睛】本题主要考查的是相反数的定义,属于基础题型.解决这个问题只要明确相反数的定义即可.16、36°.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【详解】,是等腰三角形,度.【点睛】本题主要考查了多边形的内角和定理和等腰三角形的性质.解题关键在于知道n边形的内角和为:180°(n﹣2).17、-3【分析】按照分式的运算法则进行运算化简,然后再把a+b=3代入即可求值.【详解】解:原式,又,∴原式=,故答案为.【点睛】本题考查了分式的加减乘除运算法则及化简求值,熟练掌握分式的运算法则是解决本题的关键.18、1【分析】根据30°的直角三角形,30°所对的边是斜边的一半,可得AC=1cm,进而求出阴影三角形的面积.【详解】解:∵∠B=30°,∠ACB=90°,AB=4cm,∴AC=1cm,∵∠AED=∠ACB=90°,∴BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=1cm.故S△ACF=×1×1=1(cm1).故答案为1.【点睛】本题考查了30°的直角三角形的性质,熟练掌握相关性质定理是解题关键.三、解答题(共78分)19、(1);(2)【分析】(1)根据解分式方程的一般步骤解分式方程即可;(2)根据解分式方程的一般步骤解分式方程即可;【详解】解:(1)化为整式方程为:移项、合并同类项,得解得:经检验:是原方程的解.(2)化为整式方程为:移项、合并同类项,得解得:经检验:是原方程的解.【点睛】此题考查的是解分式方程,掌握解分式方程的一般步骤是解决此题的关键,需要注意的是解分式方程要验根.20、(1)见详解;(2)①见详解;②.【分析】(1)直接利用AAS,即可证明结论成立;(2)①由折叠的性质,得到BE=DE,EF平分∠BED,由DE⊥BC,得到∠DBE=∠ACB=∠FEB=45°,即可得到EF∥AC;②当点Q是EF与BD的交点时,点在整个运动过程中用时最少;连接AQ、AD,可得△ADQ是等腰直角三角形,根据勾股定理求出BD,然后得到BQ=DQ=,然后求出AQ,即可求出点P运动所用的时间.【详解】解:(1)由题意,∵,,BC=CB,∴(AAS);(2)①如图:由折叠的性质,得到BE=DE,∠BEF=∠DEF,∵DE⊥BC,∴∠BED=90°,∴∠BEF=∠DEF=∠DBE=∠BDE=45°;∵,∴∠ACB=∠DBE,∴∠ACB=∠DBE=∠FEB=45°,∴EF∥AC;②如图,连接AQ交BC于点H,连接AD,当点Q是EF与BD的交点时,点在整个运动过程中用时最少;此时AQ∥DE,AD∥BC,∴∠ADQ=45°,∠DAQ=90°,∴△ADQ是等腰直角三角形,∴AD=AQ,∵点Q时BD中点,∴点H是BE的中点,∵BE=DE=,,∴,∴,,∴点P运动所用的时间为:(秒).【点睛】本题考查了三角形的综合问题,等腰直角三角形的判定和性质,全等三角形的判定和性质,平行线的性质,折叠的性质,以及勾股定理,解题的关键是熟练掌握所学的知识进行解题.注意运用数形结合的思想.21、1【分析】AD为高,那么题中有两个直角三角形.AD在这两个直角三角形中,设BD为未知数,可利用勾股定理都表示出AD长.求得BD长,再根据勾股定理求得AD长.【详解】解:设BD=x,则CD=14-x.在RtABD中,=132-在RtACD中,=152-∴132-=152-解之得=5∴AD===1.【点睛】勾股定理.22、(1)-1,0;0,-3;(2)①点;②点,最小值为;(3)点的坐标为或或.【分析】(1)根据两个非负数和为0的性质即可求得点A、B的坐标;(2)①先求得直线AB的解析式,根据求得,继而求得点的横坐标,从而求得答案;②先求得直线AM的解析式及点的坐标,过点过轴的平行线交直线与点,过点作垂直于的延长线于点,求得,即为最小值,即点为所求,求得点的坐标,再求得的长即可;(3)先求得直线BD的解析式,设点,同理求得直线的解析式,求出点的坐标为,证得,分∠QGE为直角、∠EQG为直角、∠QEG为直角,三种情况分别求解即可.【详解】(1)∵,∴,,则,故点A、B的坐标分别为:,故答案为:;;(2)①直线经过点和轴上一点,,∴,由(1)得:点A、B的坐标分别为:,则,,设直线AB的解析式为:,∴解得:∴直线AB的解析式为:,∵∴作⊥轴于,∴,∴,∴点的横坐标为,又点在直线AB上,∴,∴点的坐标为;②由(1)得:点A、B的坐标分别为:,则,,∴,,∴点的坐标为,设直线AM的解析式为:,∴解得:∴直线AM的解析式为:,根据题意,平移后点,过点过轴的平行线交直线与点,过点作垂直于的延长线于点,如图1,∴∥,∵,∴,则,为最小值,即点为所求,则点N的横坐标与点的横坐标相同都是,点N在直线AM上,∴,∴点的坐标为,∴,;(3)根据题意得:点的坐标分别为:,设直线的解析式为:,∴,解得:,∴直线BD的解析式为:,设点,同理直线的解析式为:,∵,∴设直线的解析式为:,当时,,则,则直线的解析式为:,故点的坐标为,即,①当为直角时,如下图,∵为等腰直角三角形,∴,则点的坐标为,将点的坐标代入直线的解析式并解得:,故点;②当为直角时,如下图,作于,∵为等腰直角三角形,∴,,∴∥轴,、和都是底边相等的等腰直角三角形,∴,∴,则点的坐标为,将点的坐标代入直线的解析式并解得:,故点;③当为直角时,如下图,同理可得点的坐标为,将点的坐标代入直线的解析式并解得:,故点;综上,点的坐标为:或或.【点睛】本题考查的是一次函数综合运用,待定系数法求函数解析式、涉及到线段和的最值、等腰直角三角形的性质等,其中(3)要注意分类求解,避免遗漏.23、【分析】根据勾股定理的逆定理可得是直角三角形,且∠A=90°,然后设,由线段垂直平分线的性质可得,再根据勾股定理列方程求出x即可.【详解】解:连接,∵在中,,,,∴,∴是直角三角形,且∠A=90°,∵是的垂直平分线,∴,设,则,∴,解得,即的长是.【点睛】本题考查了线段垂直平分线的性质,勾股定理及其逆定理.关键是掌握勾股定理:在任

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论