版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省温州市南浦实验中学2023年数学九上期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在△ABC中,M,N分别为AC,BC的中点.则△CMN与△CAB的面积之比是()A.1:2 B.1:3 C.1:4 D.1:92.已知点A(,m),B(l,m),C(2,1)在同一条抛物线上,则下列各点中一定在这条抛物线上的是(
)A. B. C. D.3.关于的一元二次方程x2﹣2+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣24.下列图形中,是中心对称图形但不是轴对称图形的是().A. B.C. D.5.已知2x=3y(x≠0,y≠0),则下面结论成立的是()A. B. C. D.6.下列各说法中:①圆的每一条直径都是它的对称轴;②长度相等的两条弧是等弧;③相等的弦所对的弧也相等;④同弧所对的圆周角相等;⑤90°的圆周角所对的弦是直径;⑥任何一个三角形都有唯一的外接圆;其中正确的有()A.3个 B.4个 C.5个 D.6个7.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和B,与y轴的正半轴交于点C,下列结论:①abc>0;②4a﹣2b+c>0;③2a﹣b>0,其中正确的个数为()A.0个 B.1个 C.2个 D.3个8.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形
②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2
④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.49.已知,在中,,则边的长度为()A. B. C. D.10.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.811.如图所示,在直角坐标系中,A点坐标为(-3,-2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则当PQ最小时,P点的坐标为()A.(-3,0) B.(-2,0) C.(-4,0)或(-2,0) D.(-4,0)12.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2 B. C.π﹣4 D.二、填空题(每题4分,共24分)13.某一时刻身高160cm的小王在太阳光下的影长为80cm,此时他身旁的旗杆影长10m,则旗杆高为______.14.将抛物线先向上平移3个单位,再向右平移2个单位后得到的新抛物线对应的函数表达式为______.15.二次函数y=(x﹣1)2﹣5的顶点坐标是_____.16.在平面直角坐标系中,点P(4,1)关于点(2,0)中心对称的点的坐标是_______.17.已知两个二次函数的图像如图所示,那么a1________a2(填“>”、“=”或“<”).18.在中,,,,则的值是__________.三、解答题(共78分)19.(8分)如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E,CF⊥AF,且CF=CE(1)求证:CF是⊙O的切线;(2)若sin∠BAC=,求的值.20.(8分)如图,点A,P,B,C是⊙O上的四个点,∠DAP=∠PBA.(1)求证:AD是⊙O的切线;(2)若∠APC=∠BPC=60°,试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)在第(2)问的条件下,若AD=2,PD=1,求线段AC的长.21.(8分)如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转一定角度后能与△DFA重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若AE=5cm,求四边形ABCD的面积.22.(10分)如图,已知抛物线y1=﹣x2+x+2与x轴交于A、B两点,与y轴交于点C,直线l是抛物线的对称轴,一次函数y2=kx+b经过B、C两点,连接AC.(1)△ABC是三角形;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)结合图象,写出满足y1>y2时,x的取值范围.23.(10分)如图,四边形ABCD的三个顶点A、B、D在⊙O上,BC经过圆心O,且交⊙O于点E,∠A=120°,∠C=30°.(1)求证:CD是⊙O的切线.(2)若CD=6,求BC的长.(3)若⊙O的半径为4,则四边形ABCD的最大面积为.24.(10分)如图,在平面直角坐标系中,抛物线(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.25.(12分)方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,且三个顶点的坐标分别为A(1,﹣4),B(5,﹣4),C(4,﹣1).(1)画出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(1)作出△ABC绕着点A逆时针方向旋转90°后得到的△AB1C1.26.阅读以下材料,并按要求完成相应地任务:莱昂哈德·欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等),∴△MDI∽△ANI,∴,∴①,如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF,∵DE是⊙O的直径,∴∠DBE=90°,∵⊙I与AB相切于点F,∴∠AFI=90°,∴∠DBE=∠IFA,∵∠BAD=∠E(同弧所对圆周角相等),∴△AIF∽△EDB,∴,∴②,任务:(1)观察发现:,(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.
参考答案一、选择题(每题4分,共48分)1、C【解析】由M、N分别为AC、BC的中点可得出MN∥AB,AB=2MN,进而可得出△ABC∽△MNC,根据相似三角形的性质即可得到结论.【详解】∵M、N分别为AC、BC的中点,∴MN∥AB,且AB=2MN,∴△ABC∽△MNC,∴()2=.故选C.【点睛】本题考查了相似三角形的判定与性质以及三角形中位线定理,根据三角形中位线定理结合相似三角形的判定定理找出△ABC∽△MNC是解题的关键.2、B【分析】根据抛物线的对称性进行分析作答.【详解】由点A(,m),B(l,m),可得:抛物线的对称轴为y轴,∵C(2,1),∴点C关于y轴的对称点为(-2,1),故选:B.【点睛】本题考查二次函数的图象和性质,找到抛物线的对称轴是本题的关键.3、A【分析】关于x的一元二次方程x²+2x+k=0有两个相等的实数根,可知其判别式为0,据此列出关于k的不等式,解答即可.【详解】根据一元二次方程根与判别式的关系,要使得x2﹣2+k=0有两个相等实根,只需要△=(-2)²-4k=0,解得k=1.故本题正确答案为A.【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4、B【分析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A、既是中心对称图形,又是轴对称图形,不符合题意;B、是中心对称图形但不是轴对称图形,符合题意;C、不是中心对称图形,但是轴对称图形,不符合题意;D、不是中心对称图形,但是轴对称图形,不符合题意;故选B.【点睛】本题考查中心对称图形与轴对称图形的识别,熟练掌握中心对称图形与轴对称图形的定义是解题的关键.5、D【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x:3=y:2,即,故该选项不符合题意,B.由内项之积等于外项之积,得x:3=y:2,即,故该选项不符合题意,C.由内项之积等于外项之积,得x:y=3:2,即,故该选项不符合题意,D.由内项之积等于外项之积,得2:y=3:x,即,故D符合题意;故选:D.【点睛】本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.6、A【分析】根据对称轴、等弧、圆周角定理、三角形外接圆的定义及弦、弧、圆心角的相互关系分别判断后即可解答.【详解】①对称轴是直线,而直径是线段,圆的每一条直径所在直线都是它的对称轴,①错误;②在同圆或等圆中,长度相等的两条弧是等弧,不在同圆或等圆中不一定是等弧,②错误;③在同圆或等圆中,相等的弦所对的弧也相等,不在同圆或等圆中,相等的弦所对的弧不一定相等,③错误;④根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,④正确;⑤根据圆周角定理推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径,⑤正确;⑥根据三角形外接圆的定义可知,任何一个三角形都有唯一的外接圆,⑥正确.综上,正确的结论为③④⑤.故选A.【点睛】本题了考查对称轴、等弧、圆周角、外接圆的定义及其相互关系,熟练运用相关知识是解决问题的关键.7、C【分析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,进而判断①;根据x=﹣2时,y>1可判断②;根据对称轴x=﹣1求出2a与b的关系,进而判断③.【详解】①由抛物线开口向下知a<1,∵对称轴位于y轴的左侧,∴a、b同号,即ab>1.∵抛物线与y轴交于正半轴,∴c>1,∴abc>1;故①正确;②如图,当x=﹣2时,y>1,则4a﹣2b+c>1,故②正确;③∵对称轴为x=﹣>﹣1,∴2a<b,即2a﹣b<1,故③错误;故选:C.【点睛】本题主要考查二次函数的图象和性质,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.8、C【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.9、B【分析】如图,根据余弦的定义可求出AB的长,根据勾股定理即可求出BC的长.【详解】如图,∵∠C=90°,AC=9,cosA=,∴cosA==,即,∴AB=15,∴BC===12,【点睛】本题考查三角函数的定义,在直角三角形中,锐角的正弦是角的对边与斜边的比值;余弦是角的邻边与斜边的比值;正切是角的对边与邻边的比值;熟练掌握三角函数的定义是解题关键.10、B【解析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.【详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.11、A【解析】此题根据切线的性质以及勾股定理,把要求PQ的最小值转化为求AP的最小值,再根据垂线段最短的性质进行分析求解.【详解】连接AQ,AP.根据切线的性质定理,得AQ⊥PQ;要使PQ最小,只需AP最小,则根据垂线段最短,则作AP⊥x轴于P,即为所求作的点P;此时P点的坐标是(-3,0).故选A.【点睛】此题应先将问题进行转化,再根据垂线段最短的性质进行分析.12、A【分析】先证得三角形OBC是等腰直角三角形,通过解直角三角形求得BC和BC边上的高,然后根据S阴影=S扇形OBC-S△OBC即可求得.【详解】∵∠BAC=45°,∴∠BOC=90°,∴△OBC是等腰直角三角形,∵OB=2,∴△OBC的BC边上的高为:,∴∴S阴影=S扇形OBC-S△OBC=,故选:A.【点睛】本题考查了扇形的面积公式:(n为圆心角的度数,R为圆的半径).也考查了等腰直角三角形三边的关系和三角形的面积公式.二、填空题(每题4分,共24分)13、20m【解析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm,根据相同时刻的物高与影长成比例,得到160::10,解得.故答案是:20m.【点睛】本题考查的是相似三角形的应用,掌握相似三角形的性质是解题的关键.14、【分析】根据二次函数平移的特点即可求解.【详解】将抛物线先向上平移3个单位,再向右平移2个单位后得到的新抛物线对应的函数表达式为故答案为:.【点睛】此题主要考查二次函数的平移,解题的关键是熟知二次函数平移的特点.15、(1,﹣5)【分析】已知解析式为抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【详解】解:因为y=(x﹣1)2﹣5是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(1,﹣5).故答案为:(1,﹣5).【点睛】本题考查了二次函数的性质,根据二次函数的顶点式找出抛物线的对称轴及顶点坐标是解题的关键.16、(0,-1)【分析】在平面直角坐标系中画出图形,根据已知条件列出方程并求解,从而确定点关于点中心对称的点的坐标.【详解】解:连接并延长到点,使,设,过作轴于点,如图:在和中∴∴,∵,∴,∴,∴故答案是:【点睛】本题考查了一个点关于某个点对称的点的坐标,关键在于掌握点的坐标的变化规律.17、【分析】直接利用二次函数的图象开口大小与a的关系进而得出答案.【详解】解:如图所示:的开口小于的开口,则a1>a2,故答案为:>.【点睛】此题主要考查了二次函数的图象,正确记忆开口大小与a的关系是解题关键.18、【分析】直接利用正弦的定义求解即可.【详解】解:如下图,在中,故答案为:.【点睛】本题考查的知识点是正弦的定义,熟记定义内容是解此题的关键.三、解答题(共78分)19、(1)见解析(2)【分析】(1)首先连接OC,由CD⊥AB,CF⊥AF,CF=CE,即可判定AC平分∠BAF,由圆周角定理即可得∠BOC=2∠BAC,则可证得∠BOC=∠BAF,即可判定OC∥AF,即可证得CF是⊙O的切线.(2)由垂径定理可得CE=DE,即可得S△CBD=2S△CEB,由△ABC∽△CBE,根据相似三角形的面积比等于相似比的平方,易求得△CBE与△ABC的面积比,从而可求得的值.【详解】(1)证明:连接OC.∵CE⊥AB,CF⊥AF,CE=CF,∴AC平分∠BAF,即∠BAF=2∠BAC.∵∠BOC=2∠BAC,∴∠BOC=∠BAF.∴OC∥AF.∴CF⊥OC.∴CF是⊙O的切线.(2)解:∵AB是⊙O的直径,CD⊥AB,∴CE=ED,∠ACB=∠BEC=90°.∴S△CBD=2S△CEB,∠BAC=∠BCE.∴△ABC∽△CBE.∴.∴.20、(1)证明见解析;(2)PA+PB=PF+FC=PC;(3)1+.【分析】(1)欲证明AD是⊙O的切线,只需推知AD⊥AE即可;(2)首先在线段PC上截取PF=PB,连接BF,进而得出△BPA≌△BFC(AAS),即可得出PA+PB=PF+FC=PC;(3)利用△ADP∽△BDA,得出==,求出BP的长,进而得出△ADP∽△CAP,则=,则AP2=CP•PD求出AP的长,即可得出答案.【详解】(1)证明:先作⊙O的直径AE,连接PE,∵AE是直径,∴∠APE=90°.∴∠E+∠PAE=90°.又∵∠DAP=∠PBA,∠E=∠PBA,∴∠DAP=E,∴∠DAP+∠PAE=90°,即AD⊥AE,∴AD是⊙O的切线;(2)PA+PB=PC,证明:在线段PC上截取PF=PB,连接BF,∵PF=PB,∠BPC=60°,∴△PBF是等边三角形,∴PB=BF,∠BFP=60°,∴∠BFC=180°﹣∠PFB=120°,∵∠BPA=∠APC+∠BPC=120°,∴∠BPA=∠BFC,在△BPA和△BFC中,,∴△BPA≌△BFC(AAS),∴PA=FC,AB=CB,∴PA+PB=PF+FC=PC;(3)∵△ADP∽△BDA,∴==,∵AD=2,PD=1,∴BD=4,AB=2AP,∴BP=BD﹣DP=3,∵∠APD=180°﹣∠BPA=60°,∴∠APD=∠APC,∵∠PAD=∠E,∠PCA=∠E,∴∠PAD=∠PCA,∴△ADP∽△CAP,∴=,∴AP2=CP•PD,∴AP2=(3+AP)•1,解得:AP=或AP=(舍去),由(2)知△ABC是等边三角形,∴AC=BC=AB=2AP=1+.【点睛】此题属于圆的综合题,涉及了圆周角定理,切线的判定与性质,相似三角形的判定与性质,全等三角形的判定与性质等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.21、(1)点A为旋转中心;(1)旋转了90°或170°;(3)四边形ABCD的面积为15cm1.【分析】(1)根据图形确定旋转中心即可;(1)对应边AE、AF的夹角即为旋转角,再根据正方形的每一个角都是直角解答;(3)根据旋转变换只改变图形的位置不改变图形的形状与大小可得△BAE的面积等于△DAF的面积,从而得到四边形ABCD的面积等于正方形AECF的面积,然后求解即可.【详解】(1)由图可知,点A为旋转中心;(1)在四边形ABCD中,∠BAD=90°,所以,旋转了90°或170°;(3)由旋转性质知,AE=AF,∠F=∠AEB=∠AEC=∠C=90°∴四边形AECF是正方形,∵△BEA旋转后能与△DFA重合,∴△BEA≌△DFA,∴S△BEA=S△DFA,∴四边形ABCD的面积=正方形AECF的面积,∵AE=5cm,∴四边形ABCD的面积=51=15cm1.【点睛】本题考查了旋转的性质,正方形的性质以及旋转中心的确定,旋转角的确定,以及旋转变换只改变图形的位置不改变图形的形状与大小的性质.22、(1)直角;(2)P(,);(3)0<x<1.【分析】(1)求出点A、B、C的坐标分别为:(-1,0)、(1,0)、(0,2),则AB2=25,AC2=5,BC2=20,即可求解;(2)点A关于函数对称轴的对称点为点B,则直线BC与对称轴的交点即为点P,即可求解;(3)由图象可得:y1>y2时,x的取值范围为:0<x<1.【详解】解:(1)当x=0时,y1=0+0+2=2,当y=0时,﹣x2+x+2=0,解得x1=-1,x2=1,∴点A、B、C的坐标分别为:(﹣1,0)、(1,0)、(0,2),则AB2=25,AC2=5,BC2=20,故AB2=AC2+BC2,故答案为:直角;(2)将点B、C的坐标代入一次函数表达式:y=kx+b得:,解得,∴直线BC的表达式为:y=﹣x+2,抛物线的对称轴为直线:x=,点A关于函数对称轴的对称点为点B,则直线BC与对称轴的交点即为点P,当x=时,y=×+2=,故点P(,);(3)由图象可得:y1>y2时,x的取值范围为:0<x<1,故答案为:0<x<1.【点睛】本题考查了二次函数与坐标轴的交点,待定系数法求一次函数解析式,轴对称最短的性质,勾股定理及其逆定理,以及利用图像解不等式等知识,本题难度不大.23、(1)证明见解析;(2);(3).【分析】(1)连接、,根据圆内接四边形的性质得到,求得,又点在上,于是得到结论;(2)由(1)知:又,设为,则为,根据勾股定理即可得到结论;(3)连接BD,OA,根据已知条件推出当四边形ABOD的面积最大时,四边形ABCD的面积最大,当OA⊥BD时,四边形ABOD的面积最大,根据三角形和菱形的面积公式即可得到结论.【详解】解:(1)证明:连接、,四边形为圆内接四边形,,,,又点在上,是的切线;(2)由(1)知:又,,设为,则为,在中,,即,,又,,;(3)连接,,,,,,,,,,,当四边形的面积最大时,四边形的面积最大,当时,四边形的面积最大,四边形的最大面积,故答案为:.【点睛】本题考查了圆的综合题,切线的判定,勾股定理,三角形的面积的计算,正确的作出辅助线是解题的关键.24、(1);(2)S=,运动1秒使△PBQ的面积最大,最大面积是;(3)t=或t=.【分析】(1)把点A、B、C的坐标分别代入抛物线解析式,列出关于系数a、b、c的解析式,通过解方程组求得它们的值;(2)设运动时间为t秒.利用三角形的面积公式列出S△MBN与t的函数关系式.利用二次函数的图象性质进行解答;(3)根据余弦函数,可得关于t的方程,解方程,可得答案.【详解】(1)∵点B坐标为(4,0),抛物线的对称轴方程为x=1,∴A(﹣2,0),把点A(﹣2,0)、B(4,0)、点C(0,3),分别代入(a≠0),得:,解得:,所以该抛物线的解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 24631.1-2024产品几何技术规范(GPS)直线度第1部分:词汇和参数
- 2024版劳务外包合同范本
- 特许经营权授权合同
- 运动会商业赞助合约
- 就业意向协议书在职场中的应用
- 匿名股东权益协议参考
- 2024年版全新国际货物买卖合同
- 2024年专业委托加工协议书范本
- 天津市2024年临时劳动合同样式
- 成品油物流合作协议模板
- 2024-2025学年第一学期初二物理期中考试卷
- 2024秋期国家开放大学《政治学原理》一平台在线形考(形考任务三)试题及答案
- 化工企业中试阶段及试生产期间的产品能否对外销售
- 2024年福建闽投永安抽水蓄能有限公司招聘笔试参考题库附带答案详解
- 成长生涯发展展示
- 求职能力展示
- 城轨行车组织-工程列车的开行
- 中国马克思主义与当代思考题(附答案)
- 火灾逃生与自救
- 撤销冒名登记(备案)申请表
- 浙教版科学九年级上册第一章知识点;
评论
0/150
提交评论