浙江省浙东北联盟 2023年高一数学第一学期期末联考模拟试题含解析_第1页
浙江省浙东北联盟 2023年高一数学第一学期期末联考模拟试题含解析_第2页
浙江省浙东北联盟 2023年高一数学第一学期期末联考模拟试题含解析_第3页
浙江省浙东北联盟 2023年高一数学第一学期期末联考模拟试题含解析_第4页
浙江省浙东北联盟 2023年高一数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省浙东北联盟2023年高一数学第一学期期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,共60分)1.设是两条不同的直线,是两个不同的平面,且,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则2.已知直线经过点,,则该直线的斜率是A. B.C. D.3.已知方程的两根分别为、,且、,则A. B.或C.或 D.4.下列四组函数中,表示同一函数的一组是()A. B.C. D.5.国家高度重视青少年视力健康问题,指出要“共同呵护好孩子的眼睛,让他们拥有一个光明的末来”.某校为了调查学生的视力健康状况,决定从每班随机抽取5名学生进行调查.若某班有50名学生,将每一学生从01到50编号,从下面所给的随机数表的第2行第4列的数开始,每次从左向右选取两个数字,则选取的第三个号码为()随机数表如下:A.13 B.24C.33 D.366.已知函数,,则的值域为()A. B.C. D.7.简谐运动可用函数表示,则这个简谐运动的初相为()A. B.C. D.8.甲、乙两人破译一份电报,甲能独立破译的概率为0.3,乙能独立破译的概率为0.4,且两人是否破译成功互不影响,则两人都成功破译的概率为()A.0.5 B.0.7C.0.12 D.0.889.已知扇形的面积为,当扇形的周长最小时,扇形的圆心角为()A1 B.2C.4 D.810.如图,在正方体中,与平面所成角的余弦值是A. B.C. D.11.香农定理是所有通信制式最基本的原理,它可以用香农公式来表示,其中是信道支持的最大速度或者叫信道容量,是信道的带宽(),S是平均信号功率(),是平均噪声功率().已知平均信号功率为,平均噪声功率为,在不改变平均信号功率和信道带宽的前提下,要使信道容量增大到原来的2倍,则平均噪声功率约降为()A. B.C. D.12.已知,则的值为()A.-4 B.4C.-8 D.8二、填空题(本大题共4小题,共20分)13.已知函数f(x)=(5-a)x-a+1,x<1ax,x≥1,满足对任意都有成立,那么实数14.若幂函数的图象经过点,则的值等于_________.15.若在内无零点,则的取值范围为___________.16.下列命题中正确的是________(1)是的必要不充分条件(2)若函数的最小正周期为(3)函数的最小值为(4)已知函数,在上单调递增,则三、解答题(本大题共6小题,共70分)17.已知圆经过点,和直线相切.(1)求圆的方程;(2)若直线经过点,并且被圆截得的弦长为2,求直线的方程.18.在①是函数图象的一条对称轴,②函数的最大值为2,③函数图象与y轴交点的纵坐标是1这三个条件中选取两个补充在下面题目中,并解答已知函数,______(1)求的解析式;(2)求在上的值域19.已知函数.(1)求函数的最小正周期及对称轴方程;(2)若,求的值.20.已知集合,记函数的定义域为集合B.(1)当a=1时,求A∪B;(2)若“x∈A”是“x∈B”的充分不必要条件,求实数a的取值范围.21.设为平面直角坐标系中的四点,且,,(1)若,求点的坐标及;(2)设向量,,若与平行,求实数的值22.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为()件.当时,年销售总收入为()万元;当时,年销售总收入为万元.记该工厂生产并销售这种产品所得的年利润为万元.(年利润=年销售总收入一年总投资)(1)求(万元)与(件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】若,则需使得平面内有直线平行于直线;若,则需使得,由此为依据进行判断即可【详解】当时,可确定平面,当时,因为,所以,所以;当平面交平面于直线时,因为,所以,则,因为,所以,因为,所以,故A错误,D正确;当时,需使得,选项B、C中均缺少判断条件,故B、C错误;故选:D【点睛】本题考查空间中直线、平面的平行关系与垂直关系的判定,考查空间想象能力2、D【解析】根据斜率公式,,选D.3、D【解析】将韦达定理的形式代入两角和差正切公式可求得,根据韦达定理可判断出两角的正切值均小于零,从而可得,进而求得,结合正切值求得结果.【详解】由韦达定理可知:,又,,本题正确选项:【点睛】本题考查根据三角函数值求角的问题,涉及到两角和差正切公式的应用,易错点是忽略了两个角所处的范围,从而造成增根出现.4、A【解析】判断两函数定义域与函数关系式是否一致即可;【详解】解:.和的定义域都是,对应关系也相同,是同一函数;的定义域为,的定义域为,,定义域不同,不是同一函数;的定义域为,的定义域为,定义域不同,不是同一函数;的定义域为,的定义域为或,定义域不同,不是同一函数故选:5、D【解析】随机数表进行读数时,确定开始的位置以及位数,逐一往后即可,遇到超出范围或重复的数字跳过即可.【详解】根据随机数表的读取方法,第2行第4列的数为3,每次从左向右选取两个数字,所以第一组数字为32,作为第一个号码;第二组数字58,舍去;第三组数字65,舍去;第四组数字74,舍去;第五组数字13,作为第二个号码;第六组数字36,作为第三个号码,所以选取的第三个号码为36故选:D6、A【解析】根据两角和的正弦公式、二倍角公式和辅助角公式化简可得,结合和正弦函数的单调性即可求出函数的最大值和最小值.【详解】由题意知,,由,得,又函数在上单调递增,在上单调递减,令,所以函数在上单调递增,在上单调递减,有,所以,故的值域为.故选:A7、B【解析】根据初相定义直接可得.【详解】由初相定义可知,当时的相位称为初相,所以,函数的初相为.故选:B8、C【解析】根据相互独立事件的概率乘法公式,即可求解.【详解】由题意,甲、乙分别能独立破译的概率为和,且两人是否破译成功互不影响,则这份电报两人都成功破译的概率为.C.9、B【解析】先表示出扇形的面积得到圆心角与半径的关系,再利用基本不等式求出周长的最小值,进而求出圆心角的度数.【详解】设扇形的圆心角为,半径为,则由题意可得∴,当且仅当时,即时取等号,∴当扇形的圆心角为2时,扇形的周长取得最小值32.故选:B.10、D【解析】连接,设正方体棱长为1.∵平面,∴∠为与平面所成角.∴故选D11、A【解析】利用题设条件,计算出原信道容量的表达式,再列出在B不变时用所求平均噪声功率表示的信道容量的表达式,最后列式求解即得.【详解】由题意可得,,则在信道容量未增大时,信道容量为,信道容量增大到原来2倍时,,则,即,解得,故选:A12、C【解析】由已知条件,结合同角正余弦的三角关系可得,再将目标式由切化弦即可求值.【详解】由题意知:,即,∴,而.故选:C.【点睛】本题考查了同角三角函数关系,应用了以及切弦互化求值,属于基础题.二、填空题(本大题共4小题,共20分)13、【解析】利用求解分段函数单调性的方法列出不等式关系,由此即可求解【详解】由已知可得函数在R上为单调递增函数,则需满足,解得,所以实数a的取值范围为,故答案为:14、【解析】设出幂函数,将点代入解析式,求出解析式即可求解.【详解】设,函数图像经过,可得,解得,所以,所以.故答案为:【点睛】本题考查了幂函数的定义,考查了基本运算求解能力,属于基础题.15、【解析】求出函数的零点,根据函数在内无零点,列出满足条件的不等式,从而求的取值范围.【详解】因为函数在内无零点,所以,所以;由,得,所以或,由,得;由,得;由,得,因为函数在内无零点,所以或或,又因为,所以取值范围为.故答案为:.16、(3)(4)【解析】对于(1)对角取特殊值即可验证;对于(2)采用数形结合即可得到答案;对于(3)把函数进行化简为关于的函数,再利用基本不等式即可得到答案;对于(4)用整体的思想,求出单调增区间为,再让即可得到答案.【详解】对于(1),当,当,不满足是的必要条件,故(1)错误;对于(2),函数的最小正周期为,故(2)错误;对于(3),,当且仅当等号成立,故(3)正确;对于(4)函数的单调增区间为,若在上单调递增,则,又,故(4)正确.故答案为:(3)(4).三、解答题(本大题共6小题,共70分)17、(1)(x-1)2+(y+2)2=2;(2)x=2或3x-4y-6=0【解析】(1)先求线段AB的垂直平分线方程为,设圆心的坐标为C(a,-a-1),由圆心到点的距离和到切线的距离相等求解即可;(2)由题知圆心C到直线l的距离,进而讨论直线斜率存在不存在两种情况求解即可.试题解析:(1)由题知,线段AB的中点M(1,-2),,线段AB的垂直平分线方程为,即,设圆心的坐标为C(a,-a-1),则,化简,得a2-2a+1=0,解得a=1.∴C(1,-2),半径r=|AC|==∴圆C的方程为(x-1)2+(y+2)2=2.(解二:可设原方程用待定系数法求解)(2)由题知圆心C到直线l的距离,①当直线l的斜率不存在时,直线l的方程为x=2,此时直线l被圆C截得的弦长为2,满足条件.②当直线l的斜率存在时,设直线l的方程为,由题意得,解得k=,∴直线l的方程为y=(x-2)综上所述,直线l的方程为x=2或3x-4y-6=0.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小18、(1)条件选择见解析,;(2).【解析】(1)选择①②直接求出A及的解;选择①③,先求出,再由求A作答;选择②③,直接可得A,再由求作答.(2)由(1)结合正弦函数的性质即可求得在上的值域.【小问1详解】选择①②,,由及得:,所以的解析式是:.选择①③,由及得:,即,而,则,即,解得,所以的解析式是:.选择②③,,而,即,又,则有,所以的解析式是:.【小问2详解】由(1)知,,当时,,则当,即时,,当,即时,,所以函数在上的值域是.19、(1)周期,对称轴;(2)【解析】(1)化简函数,根据正弦函数的性质得到函数的最小正周期及对称轴方程;(2)由题可得,结合二倍角余弦公式可得结果.【详解】(1),,∴的最小正周期,令,可得,(2)由,得,可得:,【点睛】本题考查三角函数的性质,考查三角恒等变换,考查计算能力,属于基础题.20、(1);(2).【解析】(1)化简集合A,B,根据集合的并集运算求解;(2)由充分必要条件可转化为,建立不等式求解即可.【小问1详解】当则定义域又,所以【小问2详解】因为“x∈A”是“x∈B”的充分不必要条件,所以又所以仅需即21、(1),;(2)【解析】(1)设,写出的坐标,利用列式求解点的坐标,再写出的坐标;(2)用坐标表示出与,再根据平行条件的坐标公式列式求解.【详解】(1)设,因为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论