版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省诸暨市浬浦镇中学2023-2024学年数学八上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在等边三角形中,分别是的中点,点是线段上的一个动点,当的长最小时,点的位置在()A.点处 B.的中点处 C.的重心处 D.点处2.下列运算中,正确的是()A.3x+4y=12xy B.x9÷x3=x3C.(x2)3=x6 D.(x﹣y)2=x2﹣y23.已知的三边长分别为,且那么()A. B. C. D.4.在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,6cm,6cmC.2cm,2cm,6cm D.5cm,6cm,7cm5.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x天,生产乙种玩具零件y天,则有()A. B. C. D.6.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.6,8,10 B.8,15,16 C.4,3, D.7,24,257.二次根式在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥﹣1 C.x≠2 D.x≥﹣1且x≠28.如图,已知,添加一个条件,使得,下列条件添加错误的是()A. B. C. D.9.用反证法证明“在△ABC中,如果∠B≠∠C,那么AB≠AC“时,应假设()A.AB=AC B.∠B=∠C C.AB≠AC D.∠B≠∠C10.把分解因式,结果正确的是()A. B.C. D.二、填空题(每小题3分,共24分)11.用如图所示的正方形和长方形卡片若干张,拼成一个长为3a+2b,宽为2a+b的大长方形,需要B类卡片_____张.12.已知一个正多边形的内角和为1080°,则它的一个外角的度数为_______度.13.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是________(只写一个即可,不添加辅助线).14.如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN的周长最小时,∠AMN+∠ANM的度数是_____.15.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4cm,动点P从点B出发沿射线BC方向以2cm/s的速度运动.设运动的时间为t秒,则当t=_____秒时,△ABP为直角三角形.16.因式分解:_________.17.直角三角形的直角边长分别为,,斜边长为,则__________.18.若3a2﹣a﹣2=0,则5+2a﹣6a2=_____.三、解答题(共66分)19.(10分)如图,已知直线与直线AC交于点A,与轴交于点B,且直线AC过点和点,连接BD.(1)求直线AC的解析式.(2)求交点A的坐标,并求出的面积.(3)在x轴上是否存在一点P,使得周长最小?若存在,求出点P的坐标;若不存在,请说明理由.20.(6分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.21.(6分)张康和李健两名运动爱好者周末相约到丹江环库绿道进行跑步锻炼.(1)周日早上点,张康和李健同时从家出发,分别骑自行车和步行到离家距离分别为千米和千米的绿道环库路入口汇合,结果同时到达,且张康每分钟比李健每分钟多行米,求张康和李健的速度分别是多少米分?(2)两人到达绿道后约定先跑千米再休息,李健的跑步速度是张康跑步速度的倍,两人在同起点,同时出发,结果李健先到目的地分钟.①当,时,求李健跑了多少分钟?②求张康的跑步速度多少米分?(直接用含,的式子表示)22.(8分)如图,在△BCD中,BC=4,BD=1.(1)求CD的取值范围;(2)若AE∥BD,∠A=11°,∠BDE=121°,求∠C的度数.23.(8分)金桔是浏阳的特色水果,金桔一上市,水果店的老板就用1200元购进一批金桔,很快售完,老板又用2500元购进第二批金桔,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批金桔每件进价为多少元?(2)水果店老板销售这两批金桔时,每件售价都是150元,当第二批金桔售出80%后,决定打七折促销,结果全部售完,水果店老板共盈利多少元?24.(8分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工程所需的时间比是5:3,两队共同施工15天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工15天完成任务后,学校付给他们20000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?25.(10分)学校为了丰富同学们的社团活动,开设了足球班.开学初在某商场购进A,B两种品牌的足球,购买A品牌足球花费了2400元,购买B品牌足球花费了1600元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花20元.(1)求所购买的A、B两种品牌足球的单价是多少元?(2)为响应“足球进校园”的号召,决定再次购进A,B两种品牌足球共30个,恰逢商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了10%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A,B两种品牌足球的总费用不超过2000元,那么此次最多可购买多少个B品牌足球?26.(10分)如图,在▱ABCD中,E、F分别是BC、AD边上的点,且∠1=∠1.求证:四边形AECF是平行四边形.
参考答案一、选择题(每小题3分,共30分)1、C【分析】连接BP,根据等边三角形的性质得到AD是BC的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.【详解】解:连接BP,∵△ABC是等边三角形,D是BC的中点,∴AD是BC的垂直平分线,∴PB=PC,当的长最小时,即PB+PE最小则此时点B、P、E在同一直线上时,又∵BE为中线,∴点P为△ABC的三条中线的交点,也就是△ABC的重心,故选:C.【点睛】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.2、C【分析】直接应用整式的运算法则进行计算得到结果【详解】解:A、原式不能合并,错误;B、原式=,错误;C、原式=,正确;D、原式=,错误,故选:C.【点睛】整式的乘除运算是进行整式的运算的基础,需要完全掌握.3、D【分析】根据三角形的三边关系即可求解.【详解】∵的三边长分别为∴>0,>0,<0∴<0故选D.【点睛】此题主要考查三角形的三边关系的应用,解题的关键是熟知两边之和大于第三边.4、C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】解:A、2+3>4,能组成三角形;B、3+6>6,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.5、C【解析】根据题意可以列出相应的二元一次方程组,本题得以解决.【详解】由题意可得,,故答案为C【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.6、B【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】解:A、∵62+82=100=102,∴能构成直角三角形,故本选项不符合题意;B、∵82+152=289=172≠162,∴不能构成直角三角形,故本选项符合题意;C、∵+32=16=42,∴能构成直角三角形,故本选项不符合题意;D、∵72+242=625=252,∴能构成直角三角形,故本选项不符合题意;故选B.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.7、B【分析】直接利用二次根式的定义得出x的取值范围进而得出答案.【详解】解:二次根式在实数范围内有意义,,解得:.故选:B.【点睛】本题主要考查了二次根式有意义的条件,正确把握定义是解题关键.8、B【分析】根据三角形全等的判定定理添加条件即可.【详解】若添加,则可根据“AAS”判定两三角形全等;若添加,则有两组对应边相等,但相等的角不是夹角,不能判定两三角形全等;若添加,则可根据“SAS”判定两三角形全等;若添加,则可根据“ASA”判定两三角形全等;故选:B【点睛】本题考查的是判定两个三角形全等的条件,需要注意的是,当两边对应相等,但相等的角不是夹角时,是不能判定两个三角形全等的.9、A【分析】第一步是假设结论不成立,反面成立,进行分析判断即可.【详解】解:反证法证明“在△ABC中,如果∠B≠∠C,那么AB≠AC“时,应假设AB=AC,故答案为A.【点睛】本题考查的是反证法,理解反证法的意义及步骤是解答本题关键.10、C【解析】先提公因式2,然后再利用平方差公式进行分解即可.【详解】==,故选C.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.二、填空题(每小题3分,共24分)11、1.【分析】先求出长为3a+2b,宽为2a+b的矩形面积,然后对照A、B、C三种卡片的面积,进行组合.【详解】解:长为3a+2b,宽为2a+b的矩形面积为(3a+2b)(2a+b)=6a2+1ab+2b2,A图形面积为a2,B图形面积为ab,C图形面积为b2,则可知需要A类卡片6张,B类卡片1张,C类卡片2张.故答案为:1.【点睛】本题主要考查多项式乘法的应用,正确的计算多项式乘法是解题的关键.12、45【分析】利用n边形内角和公式求出n的值,再结合多边形的外角和度数为即可求出一个外角的度数.【详解】解:设这个正多边形为正n边形,根据题意可得解得所以该正多边形的一个外角的度数为45度.故答案为:45.【点睛】本题考查了多边形内角和与外角和,灵活利用多边形的内角和与外角和公式是解题的关键.13、∠APO=∠BPO(答案不唯一)【解析】OA=OB结合已知条件可得△AOP=≌△BOP(ASA),当∠OAP=∠OBP或∠APO=∠BPO时,利用全等三角形的判定(AAS)可得△AOP≌△BOP.解:已知点P在∠AOB的平分线上∴∠AOP=∠BOP∵OP=OP,OA=OB∴△AOP=≌△BOP.故填OA=OB.14、160°.【解析】分析:根据要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=∠AA″A′=80°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″),即可得出答案.详解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=100°,∴∠AA′M+∠A″=80°.由轴对称图形的性质可知:∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×80°=160°.故答案为:160°.点睛:本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.15、3或1【分析】分两种情况讨论:①当∠APB为直角时,点P与点C重合,根据可得;②当∠BAP为直角时,利用勾股定理即可求解.【详解】∵∠C=90°,AB=1cm,∠B=30°,∴AC=2cm,BC=6cm.①当∠APB为直角时,点P与点C重合,BP=BC=6cm,∴t=6÷2=3s.②当∠BAP为直角时,BP=2tcm,CP=(2t﹣6)cm,AC=2cm,在Rt△ACP中,AP2=(2)2+(2t﹣6)2,在Rt△BAP中,AB2+AP2=BP2,∴(1)2+[(2)2+(2t﹣6)2]=(2t)2,解得t=1s.综上,当t=3s或1s时,△ABP为直角三角形.故答案为:3或1.【点睛】本题考查了三角形的动点问题,掌握以及勾股定理是解题的关键.16、【分析】提取公因式a得,利用平方差公式分解因式得.【详解】解:,故答案为:.【点睛】本题考查了因式分解,掌握提公因式法和平方差公式是解题的关键.17、1【分析】根据勾股定理计算即可.【详解】根据勾股定理得:斜边的平方=x2=82+152=1.故答案为:1.【点睛】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答本题的关键.18、1【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.【详解】解:∵3a2﹣a﹣2=0,∴3a2﹣a=2,∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1.故答案为:1.【点睛】本题考查了整体代入法求代数式的值,以及添括号法则.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.三、解答题(共66分)19、(1);(2),;(3)存在点P使周长最小.【分析】(1)设直线AC解析式,代入,,用待定系数法解题即可;(2)将直线与直线AC两个解析式联立成方程组,转化成解二元一次方程组,再结合三角形面积公式解题;(3)作D、E关于轴对称,利用轴对称性质、两点之间线段最短解决最短路径问题,再用待定系数法解直线AE的解析式,进而令,解得直线与x轴的交点即可.【详解】(1)设直线AC解析式,把,代入中,得,解得,直线AC解析式.(2)联立,解得.,把代入中,得,,,,,,.故答案为:,.(3)作D、E关于轴对称,,周长,是定值,最小时,周长最小,,A、P、B共线时,最小,即最小,连接AE交轴于点P,点P即所求,,D、E关于轴对称,,设直线AE解析式,把,代入中,,解得,,令得,,,即存在点P使周长最小.【点睛】本题考查一次函数、二元一次方程组、轴对称最短路径问题、与x轴交点等知识,是重要考点,难度较易,掌握相关知识是解题关键.20、2.7米.【解析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【详解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,∴AB2=0.72+2.22=6.1.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,∴BD2+1.52=6.1,∴BD2=2.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的宽度CD为2.7米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.21、(1)李康的速度为米分,张健的速度为米分.(2)①李健跑了分钟,②【分析】(1)设李康的速度为米分,则张健的速度为米分,根据两人所用的时间相等列出方程求解即可得出答案;(2)①李健跑的时间=,将,代入计算即可得解;②先用含有a,b的代数式表示出张康的跑步时间,再用路程除以时间即可得到他的速度.【详解】(1)设李康的速度为米分,则张健的速度为米分,根据题意得:解得:,经检验,是原方程的根,且符合题意,.答:李康的速度为米分,张健的速度为米分.(2)①,,(分钟).故李健跑了分钟;②李健跑了的时间:分钟,张康跑了的时间:分钟,张康的跑步速度为:米分.【点睛】本题主要考查了分式方程的应用,行程问题里通常的等量关系是列出表示时间的代数式,然后根据时间相等或多少的关系列出方程并求解,要注意两个层面上的检验.22、(1)1<DC<9;(2)∠C=70°.【分析】(1)根据三角形三边关系进行求解即可得;(2)根据平行线的性质求得∠AEC的度数,继而根据三角形内角和定理即可求得答案.【详解】(1)在△BCD中,BD-BC<CD<BD+BC,又∵BC=4,BD=1,∴1-4<CD<1+4,即1<DC<9;(2)∵AE∥BD,∠BDE=121°,∴∠AEC=180°-∠BDE=11°,又∵∠A+∠C+∠AEC=180°,∠A=11°,∴∠C=70°.【点睛】本题考查了三角形三边关系,三角形内角和定理,熟练掌握相关知识是解题的关键.23、(1)120元;(2)620元【分析】(1)设第一批金桔每件进价为元,根据第二批所购件数是第一批的2倍列方程,求解检验即可;(2)求出第二批金桔的进价,第一批和第二批所购的件数,然后根据进件、售价、销售数量及利润之间的关系列式计算即可.【详解】解;(1)设第一批金桔每件进价为元,由题意得:,解得,经检验,是原方程的根且符合题意.答:第一批金桔每件进价为120元;(2)由(1)可知,第二批金桔每件进价为125元,第一批的件数为:,第二批的件数为:20,∴(元),答:水果店老板共赢利620元.【点睛】本题考查分式方程的应用,关键是根据数量作为等量关系列出方程,并根据进件、售价、销售数量及利润之间的关系列式计算.24、(1)甲队单独完成此项工程需要40天,乙队单独完成此项工程需要24天;(2)甲队应得的报酬为7500元,乙队应得的报酬为12500元.【分析】(1)首先表示出两工程队完成需要的时间,进而利用总工作量为1得出等式求出答案;(2)根据(1)中所求,进而利用两队完成的工作量求出答案.【详解】(1)设甲队单独完成此项工程需要5x天,则乙队单独完成此项工程需要3x天,根据题意得:(1解得:x=8,经检验,x=8是原方程得解,∴5x=5×8=40(天),3x=3×8=24(天).答:甲队单独完成此项工程需要40天,乙队单独完成此项工程需要24天.(2)甲队应得到20000×1乙队应得到20000×1答:甲队应得的报酬为7500元
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年租赁合同(不含房地产)
- 2024年度货物买卖租赁合同2篇
- 2024年度二手厨房设备买卖合同3篇
- 软件维护服务合同范本完整版
- 学校合同范本(2篇)
- 2024年度二手房产买卖合同6篇
- 2024年度研发合同:虚拟现实技术的研发2篇
- 驾校报名培训合同模板 2篇
- 二零二四年度个人房产转让过程中的保险合同2篇
- 平面设计合同
- 企业商务英语口语PPT培训课件
- 土壤学-李保国-土壤学习题集
- 颈托的正确使用课件
- 电力拖动自动控制系统-运动控制系统(第5版)习题答案
- 药品储存与养护技术培训课件
- 三年级上册数学课件北师大版版练习五
- 线性系统理论-郑大钟(第二版)课件
- 16.《材料的导热性》课件-2021-2022学年科学五年级上册-青岛版(五四制)
- 【三年级上册】《数字编码》课件
- 四川省乐山市各县区乡镇行政村村庄村名居民村民委员会明细
- (完整版)幼儿园大班测试卷
评论
0/150
提交评论