课外辅导三角恒等变换_第1页
课外辅导三角恒等变换_第2页
课外辅导三角恒等变换_第3页
课外辅导三角恒等变换_第4页
课外辅导三角恒等变换_第5页
已阅读5页,还剩50页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

简单的三角恒等变换课外辅导(一)考纲要求考情分析能运用两角和与差的正弦、余弦、正切公式以及二倍角的正弦、余弦和正切公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).从近三年的高考试题来看,利用同角三角函数的关系改变三角函数的名称,利用诱导公式、和差角公式及二倍角公式改变角的恒等变换是高考的热点,常与三角函数式的求值、三角函数的图象与性质、向量等知识综合考查,既有选择题、填空题,又有解答题,属中低档题,基本思想:理解三角函数中的4个“三”:(1)从知识层面看:三角函数公式系统的三条主线——同角关系式、诱导公式、变换公式(和、差、倍角).(2)从问题层面看:三角变换三大问题——求值、化简、证明.(3)从方法层面看:“三个统一”——解决三角函数问题时要从“统一角度、统一函数名、统一运算结构”方面思考(4)从算法层面看:使用公式的三重境——顺用、逆用、变用.1、两角和与差的三角函数公式:基本公式:2、辅助角公式说明:

利用辅助角公式可以将形如的函数,转化为一个角的一种三角函数形式。便于后面求三角函数的最小正周期、最大(小)值、单调区间等。这个公式有什么作用?3.二倍角公式:变形变形(降幂公式)变形(1)积化和差公式4.几个三角恒等式:(不要求记忆,但要会推导)(2)和差化积公式(3)半角公式=注:在半角公式中,根号前的正负号,由角所在的象限确定.=例1:典型例题:答案:A解析:考点5:三角函数式化简。例5:考点6:辅助角公式的应用再见典型例题:注:⑴常用角的变换:①②③④⑤⑵注意对角范围的要求。[借题发挥]解决此类问题的关键在于寻找条件和结论中的角的关系,分析角与角之间的互余、互补关系,合理拆、凑,把未知角用已知角表示.证明:左边[借题发挥]证明的本质是化异为同,可以说,证明是有目标的有目的化简.左右归一或变更结论,常用定义法、化弦法、拆项拆角法、1的变换法、公式变形法等方法.例3

:已知A、B、C是△ABC三内角,向量解:[借题发挥]

在三角函数式的化简求值问题中要注意角的变化函数名的变化,合理选择公式进行变

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论