版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省天略外国语学校高一数学第二学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是常数,那么“”是“等式对任意恒成立”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要条件2.函数的最小正周期是()A. B. C. D.3.在四边形中,若,且,则四边形是()A.矩形 B.菱形 C.正方形 D.梯形4.如图,E是平行四边形ABCD的边AD的中点,设等差数列的前n项和为,若,则()A.25 B. C. D.555.如图是一个几何体的三视图,它对应的几何体的名称是()A.棱台 B.圆台 C.圆柱 D.圆锥6.在等比数列中,已知,那么的前4项和为().A.81 B.120 C.121 D.1927.在ΔABC中,已知BC=2AC,B∈[πA.[π4C.[π48.某学生四次模拟考试时,其英语作文的减分情况如下表:考试次数x
1
2
3
4
所减分数y
4.5
4
3
2.5
显然所减分数y与模拟考试次数x之间有较好的线性相关关系,则其线性回归方程为()A.y=0.7x+5.25 B.y=﹣0.6x+5.25 C.y=﹣0.7x+6.25 D.y=﹣0.7x+5.259.已知圆M:x2+y2-2ay=0a>0截直线x+y=0A.内切 B.相交 C.外切 D.相离10.如图是某几何体的三视图,则该几何体的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点,,若向量,则向量______.12.已知函数,为的反函数,则_______(用反三角形式表示).13.竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典著,其中记载有求“囷盖”的术:“置如其周,令相乘也,又以高乘之,三十六成一”.该术相当于给出圆锥的底面周长与高,计算其体积的近似公式为.该结论实际上是将圆锥体积公式中的圆周率取近似值得到的.则根据你所学知识,该公式中取的近似值为______.14.已知数列中,,,则数列通项___________15.若实数满足,,则__________.16.在平面直角坐标系xOy中,双曲线的右支与焦点为F的抛物线交于A,B两点若,则该双曲线的渐近线方程为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图为某区域部分交通线路图,其中直线,直线l与、、都垂直,垂足分别是点A、点B和点C(高速线右侧边缘),直线与、与的距离分别为1米、2千米,点M和点N分别在直线和上,满足,记.(1)若,求AM的长度;(2)记的面积为,求的表达式,并问为何值时,有最小值,并求出最小值;(3)求的取值范围.18.在中,内角,,的对边分别为,,,已知,.(Ⅰ)求的值;(Ⅱ)若,求边的值.19.在中,内角所对的边分别为.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.20.如图,在平面四边形中,已知,,,为线段上一点.(1)求的值;(2)试确定点的位置,使得最小.21.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相同数字的概率;(2)若两人分别从甲、乙两个盒子中各摸出一球,规定:两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),这样规定公平吗?请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
由辅助角公式结合条件得出、的值,由结合同角三角函数得出、的值,于此可得出结论.【题目详解】由可得或,由辅助角公式,其中,.因此,“”是“等式对任意恒成立”的必要非充分条件,故选B.【题目点拨】本题考查必要不充分条件的判断,考查同角三角函数的基本关系以及辅助角公式的应用,考查推理能力,属于中等题.2、C【解题分析】
根据三角函数的周期公式,进行计算,即可求解.【题目详解】由角函数的周期公式,可得函数的周期,又由绝对值的周期减半,即为最小正周期为,故选C.【题目点拨】本题主要考查了三角函数的周期的计算,其中解答中熟记余弦函数的图象与性质是解答的关键,着重考查了计算与求解能力,属于基础题.3、A【解题分析】
根据向量相等可知四边形为平行四边形;由数量积为零可知,从而得到四边形为矩形.【题目详解】,可知且四边形为平行四边形由可知:四边形为矩形本题正确选项:【题目点拨】本题考查相等向量、垂直关系的向量表示,属于基础题.4、D【解题分析】
根据向量的加法和平面向量定理,得到和的值,从而得到等差数列的公差,根据等差数列求和公式,得到答案.【题目详解】因为E是平行四边形ABCD的边AD的中点,所以,因为,所以,,所以等差数列的公差,所以.故选:D.【题目点拨】本题考查向量的加法和平面向量定理,等差数列求和公式,属于简单题.5、B【解题分析】
直接由三视图还原原几何体得答案.【题目详解】解:由三视图还原原几何体如图,该几何体为圆台.故选:.【题目点拨】本题考查三视图,关键是由三视图还原原几何体,属于基础题.6、B【解题分析】
根据求出公比,利用等比数列的前n项和公式即可求出.【题目详解】,.故选:B【题目点拨】本题主要考查了等比数列的通项公式,等比数列的前n项和,属于中档题.7、D【解题分析】
由BC=2AC,根据正弦定理可得:sinA=2sinB,由角【题目详解】由于在ΔABC中,有BC=2AC,根据正弦定理可得由于B∈[π6,π4]由于在三角形中,A∈0,π,由正弦函数的图像可得:A∈[故答案选D【题目点拨】本题考查正弦定理在三角形中的应用,以及三角函数图像的应用,属于中档题.8、D【解题分析】试题分析:先求样本中心点,利用线性回归方程一定过样本中心点,代入验证,可得结论.解:先求样本中心点,,由于线性回归方程一定过样本中心点,代入验证可知y=﹣0.7x+5.25,满足题意故选D.点评:本题考查线性回归方程,解题的关键是利用线性回归方程一定过样本中心点,属于基础题.9、B【解题分析】化简圆M:x2+(y-a)2=a又N(1,1),r10、C【解题分析】
根据三视图还原直观图,根据长度关系计算表面积得到答案.【题目详解】根据三视图还原直观图,如图所示:几何体的表面积为:故答案选C【题目点拨】本题考查了三视图,将三视图转化为直观图是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
通过向量的加减运算即可得到答案.【题目详解】,.【题目点拨】本题主要考查向量的基本运算,难度很小.12、【解题分析】
先将转化为,,然后求出即可【题目详解】因为所以所以所以所以把与互换可得即所以故答案为:【题目点拨】本题考查的是反函数的求法,较简单13、3【解题分析】
首先求出圆锥体的体积,然后与近似公式对比,即可求出公式中取的近似值.【题目详解】由题知圆锥体的体积,因为圆锥的底面周长为,所以圆锥的底面面积,所以圆锥体的体积,根据题意与近似公式对比发现,公式中取的近似值为.故答案为:.【题目点拨】本题考查了圆锥体的体积公式,属于基础题.14、【解题分析】分析:在已知递推式两边同除以,可得新数列是等差数列,从而由等差数列通项公式求得,再得.详解:∵,∴两边除以得,,即,∵,∴,∴是以为首项,以为公差的等差数列,∴,∴.故答案为.点睛:在求数列公式中,除直接应用等差数列和等比数列的通项公式外,还有一种常用方法:对递推式化简变形,可构造出新数列为等差数列或等比数列,再由等差(比)数列的通项公式求出结论.这是一种转化与化归思想,必须掌握.15、【解题分析】
由反正弦函数的定义求解.【题目详解】∵,∴,,∴,∴.故答案为:.【题目点拨】本题考查反正弦函数,解题时注意反正弦函数的取值范围是,结合诱导公式求解.16、【解题分析】
根据题意到,联立方程得到,得到答案.【题目详解】,故.,故,故,故.故双曲线渐近线方程为:.故答案为:.【题目点拨】本题考查了双曲线的渐近线问题,意在考查学生的计算能力和综合应用能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),当时,;(3).【解题分析】
(1),,,由即可得解;(2)用含有的式子表示出和,得出,根据的范围得出的最小值;(3)用含有的式子表示出,利用三角恒等变换和正弦函数的值域得出答案.【题目详解】(1)由题意可知:,即,,所以;(2),,,,,,,时,取得最大值1,;(3),由题意可知,令,.【题目点拨】本题考查三角函数的综合应用,考查逻辑思维能力和计算能力,考查对基本知识的掌握,考查分析能力,属于中档题.18、(Ⅰ);(Ⅱ)【解题分析】
(Ⅰ)利用,,然后用正弦定理求解即可(Ⅱ)利用,然后利用余弦定理求解即可【题目详解】(Ⅰ)在中,由正弦定理,及,,可得.(Ⅱ)由及,可得,由余弦定理,即,可得.【题目点拨】本题考查正弦以及余弦定理的应用,属于基础题19、(Ⅰ).=.(Ⅱ).【解题分析】试题分析:利用正弦定理“角转边”得出边的关系,再根据余弦定理求出,进而得到,由转化为,求出,进而求出,从而求出的三角函数值,利用两角差的正弦公式求出结果.试题解析:(Ⅰ)解:在中,因为,故由,可得.由已知及余弦定理,有,所以.由正弦定理,得.所以,的值为,的值为.(Ⅱ)解:由(Ⅰ)及,得,所以,.故.考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.20、(1);(2)见解析【解题分析】
(1)通过,,可得,从而通过可以求出,再确定的值.(2)法一:设(),可以利用基底法将表示为t的函数,然后求得最小值;法二:建立平面直角坐标系,设(),然后表示出相关点的坐标,从而求得最小值.【题目详解】(1),,,,,即,,(2)法一:设(),则,,当时,即时,最小法二:建立如图平面直角坐标系,则,,,,设(),则,当时,即时,最小.【题目点拨】本题主要考查向量的数量积运算,数形结合思想及函数思想,意在考查学生的划归能力和分析能力,难度较大.21、(1)(2)这样规定公平,详见解析【解题分析】
(1)利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解;(2)利用古典概型及其概率的计算公式,求得的概率,即可得到结论.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自治区既有建筑安全性鉴定检测合同(2篇)
- 农村工作计划范文
- 职业学院工业机器人技术专业人才培养方案
- 执法资格考试基本级复习试题(一)
- 12《各种各样的自然资源》 说课稿-2024-2025学年科学六年级上册人教鄂教版
- 统编版五年级下册语文 五升六语文开学考试模拟卷
- 西昌学院《电力市场及调查》2022-2023学年期末试卷
- 西安外国语大学《文化与翻译》2022-2023学年第一学期期末试卷
- 生产资料及家居灯饰商贸城项目策划定位报告
- 23 月光曲 说课稿-2024-2025学年语文六年级上册统编版
- 防洪评价课件
- 普通地质学教材
- 我的连衣裙【经典绘本】
- 农村公路畅通工程质量检测方案第三方检测及交工验收
- 急性冠脉综合征特殊人群抗血小板治疗中国专家建议解读
- 1 220kV外护套电缆试验报告
- 毛泽东思想概论
- 机械加工工时定额标准计算手册
- 盾构始发条件验收
- GB/T 6726-2008汽车用冷弯型钢尺寸、外形、重量及允许偏差
- GB/T 4372.1-2014直接法氧化锌化学分析方法第1部分:氧化锌量的测定Na2EDTA滴定法
评论
0/150
提交评论